转: 理解Python的With语句
Python’s with statement provides a very convenient way of dealing with the situation where you have to do a setup and teardown to make something happen. A very good example for this is the situation where you want to gain a handler to a file, read data from the file and the close the file handler. 有一些任务,可能事先需要设置,事后做清理工作。对于这种场景,Python的with语句提供了一种非常方便的处理方式。一个很好的例子是文件处理,你需要获取一个文件句柄,从文件中读取数据,然后关闭文件句柄。 Without the with statement, one would write something along the lines of: 如果不用with语句,代码如下:
1
2
3
|
file = open ( "/tmp/foo.txt" ) data = file .read() file .close() |
There are two annoying things here. First, you end up forgetting to close the file handler. The second is how to handle exceptions that may occur once the file handler has been obtained. One could write something like this to get around this: 这里有两个问题。一是可能忘记关闭文件句柄;二是文件读取数据发生异常,没有进行任何处理。下面是处理异常的加强版本:
1
2
3
4
5
|
file = open ( "/tmp/foo.txt" ) try : data = file .read() finally : file .close() |
While this works well, it is unnecessarily verbose. This is where with is useful. The good thing about with apart from the better syntax is that it is very good handling exceptions. The above code would look like this, when using with: 虽然这段代码运行良好,但是太冗长了。这时候就是with一展身手的时候了。除了有更优雅的语法,with还可以很好的处理上下文环境产生的异常。下面是with版本的代码:
1
2
|
with open ( "/tmp/foo.txt" ) as file : data = file .read() |
with如何工作?
while this might look like magic, the way Python handles with is more clever than magic. The basic idea is that the statement after with has to evaluate an object that responds to an __enter__() as well as an __exit__() function. 这看起来充满魔法,但不仅仅是魔法,Python对with的处理还很聪明。基本思想是with所求值的对象必须有一个__enter__()方法,一个__exit__()方法。 After the statement that follows with is evaluated, the __enter__() function on the resulting object is called. The value returned by this function is assigned to the variable following as. After every statement in the block is evaluated, the __exit__() function is called. 紧跟with后面的语句被求值后,返回对象的__enter__()方法被调用,这个方法的返回值将被赋值给as后面的变量。当with后面的代码块全部被执行完之后,将调用前面返回对象的__exit__()方法。 This can be demonstrated with the following example: 下面例子可以具体说明with如何工作:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
#!/usr/bin/env python # with_example01.py class Sample: def __enter__( self ): print "In __enter__()" return "Foo" def __exit__( self , type , value, trace): print "In __exit__()" def get_sample(): return Sample() with get_sample() as sample: print "sample:" , sample |
When executed, this will result in: 运行代码,输出如下
1
2
3
4
|
bash - 3.2 $ . / with_example01.py In __enter__() sample: Foo In __exit__() |
As you can see, The __enter__() function is executed The value returned by it - in this case "Foo" is assigned to sample The body of the block is executed, thereby printing the value of sample ie. "Foo" The __exit__() function is called. What makes with really powerful is the fact that it can handle exceptions. You would have noticed that the __exit__() function for Sample takes three arguments - val, type and trace. These are useful in exception handling. Let’s see how this works by modifying the above example. 正如你看到的, 1. __enter__()方法被执行 2. __enter__()方法返回的值 - 这个例子中是"Foo",赋值给变量'sample' 3. 执行代码块,打印变量"sample"的值为 "Foo" 4. __exit__()方法被调用 with真正强大之处是它可以处理异常。可能你已经注意到Sample类的__exit__方法有三个参数- val, type 和 trace。 这些参数在异常处理中相当有用。我们来改一下代码,看看具体如何工作的。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
#!/usr/bin/env python # with_example02.py class Sample: def __enter__( self ): return self def __exit__( self , type , value, trace): print "type:" , type print "value:" , value print "trace:" , trace def do_something( self ): bar = 1 / 0 return bar + 10 with Sample() as sample: sample.do_something() |
Notice how in this example, instead of get_sample(), with takes Sample(). It does not matter, as long as the statement that follows with evaluates to an object that has an __enter__() and __exit__() functions. In this case, Sample()’s __enter__() returns the newly created instance of Sample and that is what gets passed to sample. 这个例子中,with后面的get_sample()变成了Sample()。这没有任何关系,只要紧跟with后面的语句所返回的对象有__enter__()和__exit__()方法即可。此例中,Sample()的__enter__()方法返回新创建的Sample对象,并赋值给变量sample。 When executed: 代码执行后:
1
2
3
4
5
6
7
8
9
10
|
bash - 3.2 $ . / with_example02.py type : < type 'exceptions.ZeroDivisionError' > value: integer division or modulo by zero trace: <traceback object at 0x1004a8128 > Traceback (most recent call last): File "./with_example02.py" , line 19 , in <module> sample.do_something() File "./with_example02.py" , line 15 , in do_something bar = 1 / 0 ZeroDivisionError: integer division or modulo by zero |
Essentially, if there are exceptions being thrown from anywhere inside the block, the __exit__() function for the object is called. As you can see, the type, value and the stack trace associated with the exception thrown is passed to this function. In this case, you can see that there was a ZeroDivisionError exception being thrown. People implementing libraries can write code that clean up resources, close files etc. in their __exit__() functions. 实际上,在with后面的代码块抛出任何异常时,__exit__()方法被执行。正如例子所示,异常抛出时,与之关联的type,value和stack trace传给__exit__()方法,因此抛出的ZeroDivisionError异常被打印出来了。开发库时,清理资源,关闭文件等等操作,都可以放在__exit__方法当中。 Thus, Python’s with is a nifty construct that makes code a little less verbose and makes cleaning up during exceptions a bit easier. 因此,Python的with语句是提供一个有效的机制,让代码更简练,同时在异常产生时,清理工作更简单。 I have put the code examples given here on Github. 示例代码可以在Github上面找到。 译注:本文原文见Understanding Python's "With" Statement
转: 理解Python的With语句的更多相关文章
- 理解python的with语句
Python’s with statement provides a very convenient way of dealing with the situation where you have ...
- 深入理解python with语句
python的with语句相当于try.....finally,它是如何实现的呢?下面就结合范例和伪指令的实现来分析一下. with语句会汇编成:先调用with语句后面的表达式(open(...)), ...
- 用一个简单的例子来理解python高阶函数
============================ 用一个简单的例子来理解python高阶函数 ============================ 最近在用mailx发送邮件, 写法大致如 ...
- 深入理解 Python 异步编程(上)
http://python.jobbole.com/88291/ 前言 很多朋友对异步编程都处于"听说很强大"的认知状态.鲜有在生产项目中使用它.而使用它的同学,则大多数都停留在知 ...
- 完全理解 Python 迭代对象、迭代器、生成器
完全理解 Python 迭代对象.迭代器.生成器 2017/05/29 · 基础知识 · 9 评论 · 可迭代对象, 生成器, 迭代器 分享到: 原文出处: liuzhijun 本文源自RQ作者 ...
- [转]深刻理解Python中的元类(metaclass)以及元类实现单例模式
使用元类 深刻理解Python中的元类(metaclass)以及元类实现单例模式 在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩:在看python cookbook中关于元类创建单例 ...
- python assert 断言语句的作用
python assert 断言语句的作用 assert语句的应用场景 使用assert语句是一个很好的习惯. 我们在编写代码的时候, 不知道程序会在什么时候崩溃, 与其让它在深度运行时崩溃, 不如预 ...
- 深入理解Python中的yield和send
send方法和next方法唯一的区别是在执行send方法会首先把上一次挂起的yield语句的返回值通过参数设定,从而实现与生成器方法的交互. 但是需要注意,在一个生成器对象没有执行next方法之前,由 ...
- 理解 python 装饰器
变量 name = 'world' x = 3 变量是代表某个值的名字 函数 def hello(name): return 'hello' + name hello('word) hello wor ...
随机推荐
- TP复习13
## ThinkPHP 3.1.2 模板的使用技巧#讲师:赵桐正微博:http://weibo.com/zhaotongzheng 本节课大纲:一.模板包含 <include file=&quo ...
- ComboBox控件
一.怎样加入�/删除Combo Box内容1,在Combo Box控件属性的Data标签里面加入�,一行表示Combo Box下拉列表中的一行.换行用ctrl+回车.2,在程序初始化时动态加入� ...
- range与xrange之间的差异(转)
range 函数说明:range([start,] stop[, step]),根据start与stop指定的范围以及step设定的步长,生成一个序列.range示例: >>> ra ...
- [CodeEdit--Sublime]一些好用的Plugins
Sublime Text 3 Plugins (**)packet control:plugin包管理器 (**)netuts-fetch: (**)markdown editing:Markdown ...
- repeater复杂表格的显示
首先简要的描述一下所要完成的事情:将某一个方言中的每一个声韵调组合,按照格式显示一个字 数据库中的信息:****,声母(Initial),韵母(Final),声调(Tone),一个汉字(Word),* ...
- Android概览
1.1 Android的开发缘由 早起的移动电话单单只具有手机的功能,并没有追求更多的追求功能和游戏娱乐.而在诺基亚提供的“贪吃蛇”游戏集成获得巨大成功的时候,手机制造商们才意识到手机 ...
- 关于composer
Composer PHP依赖管理的新时代http://segmentfault.com/a/1190000000353129 Composer 的主页 https://getcomposer.or ...
- 基于Linux的集群系统(八)--转
引用位置:http://www.ibm.com/developerworks/cn/linux/cluster/linux_cluster/part8/index.html OSI参考模型及TCP/I ...
- _IO, _IOR, _IOW, _IOWR 宏的用法与解析
转载:http://blog.chinaunix.net/uid-20754793-id-177774.html 今天在写字符驱动验证程序的时候要用到ioctl函数,其中有一个cmd参数,搞了半天也不 ...
- [Adruino]XBEE 无线数据传输实际操作
双轮小车制作实例代码 引用:http://hi.baidu.com/dlfla84/item/52b89017a6209c5cf1090e9b 双轮小车制作 2009-6-12 初步完成了串口数据缓存 ...