转自:http://blog.sciencenet.cn/blog-116082-218338.html

方差分析(analysis of variance,ANOVA),即变量分析,是对多个样本平均数差异显著性检验的方法。
 
  在一个多处理试验中,可以得到一系列不同的观测值。造成观测值不同的原因是多方面的,有的是不同的处理引起的,即处理效应;有的是试验过程中偶然性因素的干扰和测量误差造成的,即误差效应。方差分析的基本思想就是将测量数据的总变异按变异原因不同分解为处理效应和试验误差,并作出其数量估计。要正确认识观测值的变异是由处理效应还是误差效应引起的,我们可以计算出处理效应的均方和误差效应的均方,在一定意义下进行比较,从而检验处理间的差异显著性。
假设一个试验有k个处理,每个处理有n个观测数据,则总共有nk的观测值。用表示第i个处理的第j个观测值,其中i=1,2,3,...,k;j=1,2,3,...,n。表示第i个处理观测值的总体平均数,表示试验误差,则有:,即第i个处理的第j个观测值是由该处理的总体平均数加上不可避免的试验误差组成的。而对于总体平均数(所有nk个观测数据的平均数),则有。若将各自处理水平上的总体平均数视为在总体平均数的基础上施加了不同的处理效应造成了,则有。综上,,即任一个观测数据都是由总体平均数加上处理效应以及试验误差组成的。同理,对于由样本估计的线性模型为:

为样本平均数,为第i个处理的效应,为试验误差。根据的不同假定,上述模型可分为:

  固定模型(fixed model):各个处理的效应值是固定的,即除去随机误差外每个处理所产生的效应是固定的,是个常量且之和为0。此时的试验处理水平常是根据目的事先主观选定的,如几种不同温度下小麦籽粒的发芽情况。
  随机模型(random model):各个处理的效应值不是固定的,而是由随机因素所引起的效应。是从期望均值为0,方差为的正态总体中得到的随机变量。如调查不同生境下某物种的生长状况时,不同生境的气候、土壤条件及水分条件等属于无法认为控制的因素,就要用随机模型来处理。
  混合模型(mixed model):多因素试验中,既包括固定效应的因素,又包括随机效应的因素,则该试验应对应于混合模型。
不同模型的侧重点不完全相同,方差期望值也不一样。固定模型主要侧重于效应值的估计和比较,随机模型则侧重效应方差的估计和检验。因此在进行分析及试验之前就要明确关于模型的基本假设。对于单因素方差分析,固定模型和随机模型没有多大差别。
 
方差分析的步骤:
  (进行方差分析时需要满足独立样本、方差齐性、正态分布等条件,如果方差不具备齐性(F检验),可首先进行数据转换,如进行对数转换等)
根据方差分析的基本思想,首先要将测量数据的总变异进行拆分,分为处理效应和试验误差,然后将处理间方差与处理内方差(误差方差)进行F检验,判断处理效应与试验误差差异是否显著。
1.处理间方差和处理内方差的计算:
(1)平方和的拆分:
 
  为第i个处理n个观测数据的平均数,为全部nk个观测数据的平均数,则有:(试验误差)和(处理效应),即观测数据的总变异是试验误差与处理效应之和。
  将等式两边平方:
每一个处理的n个观测数据累加:
 
  由于,在同一处理水平上为定值,则上式有:

  把k个处理再累加则有:
 

  其中:
 

  为总平方和,用表示;为处理间平方和,用表示;为组内平方和,用表示。所以:

 
 
(2)自由度的分解:

  ,即总自由度=处理间自由度+处理内自由度

 
  
   
   
   则:
  最后,根据各变异部分的平方和与自由度,得处理间方差和处理内方差
 

  

2.统计假设的显著性检验—F检验:
 

  

  比较计算所得F值与某显著水平(如0.05)下F值,可得处理间差异是否显著。若处理间差异显著,则需进一步比较哪些处理间差异是显著的。
3.多重比较(multiple comparisions)
  常用的方法有:最小显著差数法(the least significant difference,LSD)和最小显著极差法(the least significant range,LSR)。
  LSD法:实质是两个平均数比较的t检验法
  由于,得
  当时,
  为处理内误差方差,n为同一处理内重复次数。
 
  将在一定显著水平上达到差异显著的最小差数LSD定义为:
  
  当,即在给定的显著水平下差异显著,反之,差异不显著。
  LSR法:采用不同平均数间用不同的显著差数标准进行比较,依据极差范围内所包含的处理数据(也称为秩次距)k的不同而采用不同的检验尺度。常用的方法有新复极差检验(Duncan法)和q检验(SNK)法。
  新复极差检验(new multiple range test):也称为Duncan法、SSR法。
  当时,定义某显著水平下,为处理内误差方差,n为同一处理内重复次数。将需比较的各平均数按从大到小的顺序排列,则相邻两个平均数位次上的差别M=2,隔一个则M=3,以此类推。根据M值和自由度,即可查新复极差检验SSR值表得,然后得出
  将需比较的两平均数之差与对应的值比较,则可判断差异是否显著。
 

  ,则差异显著,反之不显著。

 
  q检验法:SNK法,本质与LSR法相同,将LSR法中的替换为,查值表。
  当排序秩次超过3时,三种检验的尺度关系为LSD法

 
  多重比较结果标记的方法之一:标记字母法。
  首先将全部平均数从大到小依次排列,最大的字母上标a,将该平均数与以下各平均数相比较,凡差异不显著的标a,直至与之差异显著的平均数标b,然后以此平均数为标准,与比它大的平均数比较,差异不显著的在a的后边标b,然后再以标b的最大的平均数为标准,与以下未标字母的平均数比较,凡差异不显著的仍然标b,直至差异显著的标c,以此类推,直至所有平均数都标记上字母为止。
 
 
注:当处理内观测次数(重复数)不相同时,计算公式有所改变。

方差分析(ANOVA)(转)的更多相关文章

  1. 方差分析 ANOVA

    来源: http://blog.sciencenet.cn/blog-479412-391481.html 方差分析是为了比较多个总体样本均数是否存在差别.该方法有RA.Fisher首先提出,后来由G ...

  2. 方差分析 | ANOVA | 原理 | R代码 | 进阶 | one way and two way

    原理 比较两组就用t-test,比较三组及以上就用ANOVA.注意:我们默认说的都是one way ANOVA,也就是对group的分类标准只有一个,比如case和control(ABCD多组),tw ...

  3. 方差分析anova

    方差分析 参考:http://wiki.mbalib.com/wiki/%E6%96%B9%E5%B7%AE%E5%88%86%E6%9E%90  方差分析(Analysis of Variance, ...

  4. 用R语言的quantreg包进行分位数回归

    什么是分位数回归 分位数回归(Quantile Regression)是计量经济学的研究前沿方向之一,它利用解释变量的多个分位数(例如四分位.十分位.百分位等)来得到被解释变量的条件分布的相应的分位数 ...

  5. 如何在R语言中使用Logistic回归模型

    在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或 ...

  6. R语言︱基本函数、统计量、常用操作函数

    先言:R语言常用界面操作 帮助:help(nnet) = ?nnet =??nnet 清除命令框中所有显示内容:Ctrl+L 清除R空间中内存变量:rm(list=ls()).gc() 获取或者设置当 ...

  7. 【R语言系列】作图入门示例一

    假设有如下数据,我们使用plot函数作图 月龄 体重 月龄 体重  1 4.4 9 7.3 3 5.3 3 6.0 5 7.2 9 10.4 2 5.2 12 10.2 11 8.5 3 6.1 R语 ...

  8. Genetics in geographically structured populations: defining, estimating and interpreting FST

    摘要:Wright’s F‑statistics, and especially FST, provide important insights into the evolutionary proce ...

  9. Python统计学statistics实战

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  10. iris数据集预测

    iris数据集预测(对比随机森林和逻辑回归算法) 随机森林 library(randomForest) #挑选响应变量 index <- subset(iris,Species != " ...

随机推荐

  1. 设置mysql的interactive_timeout和wait_timeout的值

    1,为什么要重新设置这两个变量的值? 因为如果数据库默认这两个变量的值是8小时(即28800秒)如果在8小时之内没有连接到数据库,等下次再连的时候就会抛连接超时,或连接关闭这样的异 常,但是多连接几次 ...

  2. 如何在Asp.Net WebApi接口中,验证请求参数中是否携带token标识!

    [BasicAuthentication] public abstract class ApiControllerBase : ApiController { #region Gloal Proper ...

  3. 如何让Vim显示dos下的^M符号

    /*********************************************************************** * 如何让Vim显示dos下的^M符号 * 声明: * ...

  4. RTP协议学习大总结从原理到代码

    from:http://wenku.baidu.com/view/aaad3d136edb6f1aff001fa5.html 一.流媒体概念 流媒体包含广义和狭义两种内涵:广义上的流媒体指的是使音频和 ...

  5. ORACLE CLIENT客户端安装步骤详解

    下载地址: http://download.oracle.com/otn/nt/oracle11g/112010/win32_11gR2_client.zip 先将下载下来的ZIP文件解压,并运行se ...

  6. Java基础——I/O续

    目录 二进制I/O类 文件导航和I/O 二进制I/O类 FileInputStream类和FileOutputStream类 *FileOutputStream(file: File) *FileOu ...

  7. Java—Map.Entry

    Map是java中的接口,Map.Entry是Map的一个内部接口. Map提供了一些常用方法,如keySet().entrySet()等方法. keySet()方法返回值是Map中key值的集合:e ...

  8. qqmap 的一些操作

    ; var mapcontorl = "mapContainer"; var fullscreen = false; function qqMap(options) { var t ...

  9. WordPress的SEO技术

    原文:http://blog.wpjam.com/article/wordpress-seo/ 文章目录[隐藏] 内容为王 页面优化 标题 链接(URL) Meta 标签 语义化 H1 H2 H3 等 ...

  10. “大数据讲师”、“Hadoop讲师”、“Spark讲师”、“云计算讲师”、“Android讲师”

    王家林简介 Spark亚太研究院院长和首席专家,中国目前唯一的移动互联网和云计算大数据集大成者. 在Spark.Hadoop.Android等方面有丰富的源码.实务和性能优化经验.彻底研究了Spark ...