理解java reference
Java世界泰山北斗级大作《Thinking In Java》切入Java就提出“Everything is Object”。在Java这个充满Object的世界中,reference是一切谜题的根源,所有的故事都是从这里开始的。
Reference是什么?
如果你和我一样在进入Java世界之前曾经浪迹于C/C++世界,就一定不会对指针陌生。谈到指针,往日种种不堪回首的经历一下子涌上心头,这里不是抱怨的地方,让我们暂时忘记指针的痛苦,回忆一下最初接触指针的甜蜜吧!还记得你看过的教科书中,如何讲解指针吗?留在我印象中的一种说法是,指针就是地址,如同门牌号码一样,有了地址,你可以轻而易举找到一个人家,而不必费尽心力的大海捞针。
C++登上历史舞台,reference也随之而来,容我问个小问题,指针和reference区别何在?我的答案来自于在C++世界享誉盛名的《More Effective C++》。
- 没有null reference。
- reference必须有初值。
- 使用reference要比使用指针效率高。因为reference不需要测试其有效性。
- 指针可以重新赋值,而reference总是指向它最初获得的对象
设计选择:
当你指向你需要指向的某个东西,而且绝不会改指向其它东西,或是当你实作一个运算符而其语法需要无法有指针达成,你就应该选择reference。其它任何时候,请采用指针。
这和Java有什么关系?
初学Java,鉴于reference的名称,我毫不犹豫的将它和C++中的reference等同起来。不过,我错了。在Java中,reference 可以随心所欲的赋值置空,对比一下上面列出的差异,就不难发现,Java的reference如果要与C/C++对应,它不过是一个穿着 reference外衣的指针而已。
于是,所有关于C中关于指针的理解方式,可以照搬到Java中,简而言之,reference就是一个地址。我们可以把它想象成一个把手,抓住它,就抓住了我们想要操纵的数据。如同掌握C的关键在于掌握指针,探索Java的钥匙就是reference。
一段小程序
我知道,太多的文字总是令人犯困,那就来段代码吧!
public class ReferenceTricks {
public static void main(String[] args) {
ReferenceTricks r = new ReferenceTricks();
// reset integer
r.i = 0;
System.out.println("Before changeInteger:" + r.i);
changeInteger(r);
System.out.println("After changeInteger:" + r.i);
// just for format
System.out.println();
// reset integer
r.i = 0;
System.out.println("Before changeReference:" + r.i);
changeReference(r);
System.out.println("After changeReference:" + r.i);
} private static void changeReference(ReferenceTricks r) {
r = new ReferenceTricks();
r.i = 5;
System.out.println("In changeReference: " + r.i);
} private static void changeInteger(ReferenceTricks r) {
r.i = 5;
System.out.println("In changeInteger:" + r.i);
} public int i;
}
对不起,我知道,把一个字段设成public是一种不好的编码习惯,这里只是为了说明问题。
如果你有兴趣自己运行一下这个程序,我等你!
OK,你已经运行过了吗?结果如何?是否如你预期?下面是我在自己的机器上运行的结果:
Before changeInteger:0
geInteger:5
hangeInteger:5
changeReference:0
geReference: 5
hangeReference:0
这里,我们关注的是两个change——changeReference和changeInteger。从输出的内容中,我们可以看出,两个方法在调用前和调用中完全一样,差异出现在调用后的结果。
糊涂的讲解
先让我们来分析一下changeInteger的行为。
前面说过了,Java中的reference就是一个地址,它指向了一个内存空间,这个空间存放着一个对象的相关信息。这里我们暂时不去关心这个内存具体如何排布,只要知道,通过地址,我们可以找到r这个对象的i字段,然后我们给它赋成5。既然这个字段的内容得到了修改,从函数中返回之后,它自然就是改动后的结果了,所以调用之后,r对象的i字段依然是5。下图展示了changeInteger调用前后内存变化。
Reference +--------+ Reference +--------+
---------->| i = 0 | ---------->| i = 5 |
|--------| |--------|
| Memory | | Memory |
| | | |
| | | |
+--------+ +--------+
调用changeReference之前 调用changeReferenc之后
让我们把目光转向changeReference。
从代码上,我们可以看出,同changeInteger之间的差别仅仅在于多了这么一句。
r = new ReferenceTricks();
这条语句的作用是分配一块新的内存,然后将r指向它。
执行完这条语句,r就不再是原来的r,但它依然是一个ReferenceTricks的对象,所以我们依然可以对这个r的i字段赋值。到此为止,一切都是那么自然。
Reference +--------+ +--------+
---------->| i = 0 | | i = 0 |
|--------| |--------|
| Memory | | Memory |
| | Reference |--------|
| | ---------->| i = 5 |
+--------+ +--------+
调用changeReference之前 调用changeReferenc之后
顺着这个思路继续下去的话,执行完changeReference,输出的r的i字段,那么应该是应该是新内存中的i,所以应该是5。至于那块被我们抛弃的内存,Java的GC功能自然会替我们善后的。
事与愿违。
实际的结果我们已经看到了,输出的是0。
肯定哪个地方错了,究竟是哪个地方呢?
参数传递的秘密
知道方法参数如何传递吗?
记得刚开始学编程那会儿,老师教导,所谓参数,有形式参数和实际参数之分,参数列表中写的那些东西都叫形式参数,在实际调用的时候,它们会被实际参数所替代。
编译程序不可能知道每次调用的实际参数都是什么,于是写编译器的高手就出个办法,让实际参数按照一定顺序放到一个大家都可以找得到的地方,以此作为方法调用的一种约定。所谓"没有规矩,不成方圆",有了这个规矩,大家协作起来就容易多了。这个公共数据区,现在编译器的选择通常是"栈",而所谓的顺序就是形式参数声明的顺序。
显然,程序运行的过程中,作为实际参数的变量可能遍布于内存的各个位置,而并不一定要老老实实的呆在栈里。为了守"规矩",程序只好将变量复制一份到栈中,也就是通常所说的将参数压入栈中。
打起精神,谜底就要揭晓了。
我刚才说什么来着?将变量复制一份到栈中,没错,"复制"!
这就是所谓的值传递。
C语言的旷世经典《The C Programming Language》开篇的第一章中,谈到实际参数时说,"在C中,所有函数的实际参数都是传‘值'的"。
马上会有人站出来,"错了,还有传地址,比如以指针传递就是传地址"。
不错,传指针就是传地址。在把指针视为地址的时候,是否考虑过这样一个问题,它也是一个变量。前面的讨论中说过了,参数传递必须要把参数压入栈中,作为地址的指针也不例外。所以,必须把这个指针也复制一份。函数中对于指针操作实际上是对于这个指针副本的操作。
Java的reference等于C的指针。所以,在Java的方法调用中,reference也要复制一份压入堆栈。在方法中对reference的操作就是对这个reference副本的操作。
谜底揭晓
好,让我们回到最初的问题上。
在changeReference中对于reference的赋值实际上是对这个reference的副本进行赋值,而对于reference的本尊没有产生丝毫的影响。
回到调用点,本尊醒来,它并不知道自己睡去的这段时间内发生过什么,所以只好当作什么都没发生过一般。就这样,副本消失了,在方法中对它的修改也就烟消云散了。
也许你会问出这样的问题,"听了你的解释,我反而对changeInteger感到迷惑了,既然是对于副本的操作,为什么changeInteger可以运作正常?"
呵呵,很有趣的大脑短路现象。
好,那我就用前面的说法解释一下changeInteger的运作。
所谓复制,其结果必然是副本完全等同于本尊。reference复制的结果必然是两个reference指向同一块内存空间。
虽然在方法中对于副本的操作并不会影响到本尊,但对内存空间的修改确实实实在在的。
回到调用点,虽然本尊依然不知道曾经发生过的一切,但它按照原来的方式访问内存的时候,取到的确是经过方法修改之后的内容。
于是方法可以把自己的影响扩展到方法之外。
多说几句
这个问题起源于我对C/C++中同样问题的思考。同C/C++相比,在changeReference中对reference赋值可能并不会造成什么很严重的后果,而在C/C++中,这么做却会造成臭名昭著的“内存泄漏”,根本的原因在于Java拥有了可爱的GC功能。即便这样,我仍不推荐使用这种的手法,毕竟GC已经很忙了,我们怎么好意思再麻烦人家。
在C/C++中,这个问题还可以继续引申。既然在函数中对于指针直接赋值行不通,那么如何在函数中修改指针呢?答案很简单,指针的指针,也就是把原来的指针看作一个普通的数据,把一个指向它的指针传到函数中就可以了。
同样的问题到了Java中就没有那么美妙的解决方案了,因为Java中可没有reference的reference这样的语法。可能的变通就是将reference进行封装成类。至于值不值,公道自在人心。
参考文献
1 《Thinking in Java》
2 《More Effective C++》
3 《The C Programming Language》
理解java reference的更多相关文章
- 理解Java中的弱引用(Weak Reference)
本篇文章尝试从What.Why.How这三个角度来探索Java中的弱引用,理解Java中弱引用的定义.基本使用场景和使用方法.由于个人水平有限,叙述中难免存在不准确或是不清晰的地方,希望大家可以指出, ...
- 《深入理解 java虚拟机》学习笔记
java内存区域详解 以下内容参考自<深入理解 java虚拟机 JVM高级特性与最佳实践>,其中图片大多取自网络与本书,以供学习和参考.
- 【转】深入理解 Java 垃圾回收机制
深入理解 Java 垃圾回收机制 一.垃圾回收机制的意义 Java语言中一个显著的特点就是引入了垃圾回收机制,使c++程序员最头疼的内存管理的问题迎刃而解,它使得Java程序员在编写程序的时候不再 ...
- 深入理解java垃圾回收机制
深入理解java垃圾回收机制---- 一.垃圾回收机制的意义 Java语言中一个显著的特点就是引入了垃圾回收机制,使c++程序员最头疼的内存管理的问题迎刃而解,它使得Java程序员在编写程序的时候不再 ...
- (6) 深入理解Java Class文件格式(五)
前情回顾 本专栏的前几篇博文, 对class文件中的常量池进行了详细的解释. 前文讲解了常量池中的7种数据项, 它们分别是: CONSTANT_Utf8_info CONSTANT_NameAndTy ...
- 深入理解java虚拟机(5)---字节码执行引擎
字节码是什么东西? 以下是百度的解释: 字节码(Byte-code)是一种包含执行程序.由一序列 op 代码/数据对组成的二进制文件.字节码是一种中间码,它比机器码更抽象. 它经常被看作是包含一个执行 ...
- 深入理解java虚拟机(4)---类加载机制
类加载的过程包括: 加载class到内存,数据校验,转换和解析,初始化,使用using和卸载unloading过程. 除了解析阶段,其他过程的顺序是固定的.解析可以放在初始化之后,目的就是为了支持动态 ...
- 深入理解java虚拟机(1)------内存区域与内存溢出
在C++领域,关于C++的内存存储,结构等等,有一本书:深度探索C++对象模型,讲解的非常透彻. 而Java确把这一工作交给了虚拟机来处理. 我们首先来看看关于内存的问题. 1.问题: 1)java ...
- 深入理解java虚拟机系列(一):java内存区域与内存溢出异常
文章主要是阅读<深入理解java虚拟机:JVM高级特性与最佳实践>第二章:Java内存区域与内存溢出异常 的一些笔记以及概括. 好了開始.假设有什么错误或者遗漏,欢迎指出. 一.概述 先上 ...
随机推荐
- AVL树的python实现
AVL树是带有平衡条件的二叉查找树,一般要求每个节点的左子树和右子树的高度最多差1(空树的高度定义为-1). 在高度为h的AVL树中,最少的节点数S(h)由S(h)=S(h-1)+S(h-2)+1得出 ...
- 几种解析xml方式的比较
1: DOM DOM 是用与平台和语言无关的方式表示 XML 文档的官方 W3C 标准.DOM 是以层次结构组织的节点或信息片断的集合.这个层次结构允许开发人员在树中寻找特定信息.分析该结构通常需要加 ...
- 【BZOJ 1031】[JSOI2007]字符加密Cipher
Description 喜欢钻研问题的JS 同学,最近又迷上了对加密方法的思考.一天,他突然想出了一种他认为是终极的加密办法:把需要加密的信息排成一圈,显然,它们有很多种不同的读法.例如下图,可以读作 ...
- BZOJ 1589: [Usaco2008 Dec]Trick or Treat on the Farm 采集糖果
Description 每年万圣节,威斯康星的奶牛们都要打扮一番,出门在农场的N(1≤N≤100000)个牛棚里转悠,来采集糖果.她们每走到一个未曾经过的牛棚,就会采集这个棚里的1颗糖果. 农场不大, ...
- Notepad++ 右键菜单自定义配置
问:想在右键菜单里面多加几个功能,怎么加,比如区块注释 答:其实notepad++的配置文件存放路径不在自己的软件路径,而存在于 xp:C:\Documents and Settings\Admini ...
- 单链表反转的递归实现(Reversing a Linked List in Java, recursively)
转自Reversing a Linked List in Java, recursively There's code in one reply that spells it out, but you ...
- Firefly 配置说明!
原地址:http://www.9miao.com/question-15-43023.html 下图一一个典型的config.json的配置:<ignore_js_op> "db ...
- Untiy 接入 移动MM 详解
原地址:http://www.cnblogs.com/alongu3d/p/3627936.html Untiy 接入 移动MM 详解 第一次接到师傅的任务(小龙),准备着手写untiy接入第三方SD ...
- Android GridView、ListView、ScrollView上下拉刷新
实现方法是将显示的内容最外层的ViewGroup做成一个LinearLayout,并扩展它,使其可以上下拖动. 重点是实现View的onTouch方法. 下载:http://files.cnblogs ...
- js 中多维数组的深拷贝的多种实现方式
因为javascript分原始类型与引用类型(与java.c#类似).Array是引用类型,所以直接用=号赋值的话,只是把源数组的地址(或叫指针)赋值给目的数组,并没有实现数组的数据的拷贝.另外对一维 ...