http://poj.org/problem?id=2728

Desert King
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 18595   Accepted: 5245

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way. 
After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital. 
His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line. 
As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

 
【题解】:

题意:给定三维的点,求这样一棵树,使得高度差的和与水平距离的和的比值最小

这题是很显然的最优比例生成树,不能用贪心求出cost/len,再建MST。

注意输出用% .3f  用%.3lf会WA

【code】:
 /**
Judge Status:Accepted Memory:732K
Time:454MS Language:G++
Code Length:1772B Author:cj
*/ #include <iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <string.h> #define N 1010
#define INF 1000000000
//using namespace std; //加了这句居然报CE,什么情况没搞懂 double dis[N];
int pre[N],vis[N];
int n; struct Nod
{
int x,y,z;
}node[N]; double distance(Nod a,Nod b)
{
return sqrt((double)((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)));
} int abs(int x){return x>?x:-x;} double prim(double r)
{
memset(vis,,sizeof(vis));
int i;
for(i=;i<=n;i++)
{
dis[i] = abs(node[].z-node[i].z) - distance(node[],node[i])*r;
pre[i]=;
}
dis[] = ;
vis[] = ;
double cost=,len=;
int j;
for(i=;i<n;i++)
{
double mins = INF;
int k = -;
for(j=;j<=n;j++)
{
if(!vis[j]&&mins>dis[j])
{
mins = dis[j];
k = j;
}
}
if(k==-) break;
vis[k] = ;
cost += abs(node[pre[k]].z-node[k].z);
len += distance(node[pre[k]],node[k]);
for(j=;j<=n;j++)
{
double val = abs(node[k].z-node[j].z) - distance(node[k],node[j])*r;
if(!vis[j]&&dis[j]>val)
{
dis[j] = val;
pre[j] = k;
}
}
}
return cost/len;
} int main()
{
while(~scanf("%d",&n)&&n)
{
int i;
for(i=;i<=n;i++)
{
scanf("%d%d%d",&node[i].x,&node[i].y,&node[i].z);
}
double a=,b=; //初始r为0
while()
{
b = prim(a);
if(fabs(a-b)<1e-) break;
a=b;
}
printf("%.3f\n",b); //printf("%.3lf\n",b); %.3lf居然WA 改 %.3f就AC 神马神马情况
}
return ;
}

poj 2728 Desert King (最小比例生成树)的更多相关文章

  1. poj 2728 Desert King(最小比率生成树,迭代法)

    引用别人的解释: 题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可, 建造水管距离为坐标之间的欧几里德距离(好象是叫欧几里德距离吧),费用为海拔之差 现在要求 ...

  2. POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25310   Accepted: 7022 Desc ...

  3. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

  4. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  5. POJ 2728 Desert King 01分数规划,最优比率生成树

    一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...

  6. POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)

    [题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...

  7. POJ 2728 Desert King (01分数规划)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions:29775   Accepted: 8192 Descr ...

  8. POJ 2728 Desert King (最优比例生成树)

    POJ2728 无向图中对每条边i 有两个权值wi 和vi 求一个生成树使得 (w1+w2+...wn-1)/(v1+v2+...+vn-1)最小. 采用二分答案mid的思想. 将边的权值改为 wi- ...

  9. poj 2728 Desert King(最优比例生成树)

    #include <iostream> #include <cstdio> #include <cmath> #include <cstdlib> #i ...

随机推荐

  1. css3 巧用结构性伪类选择器

    最近在国外的一个网站上看到的一个关于结构性伪类选择器的用法,觉得十分实用,就自己尝试了一下,并把它给记录下来: 这是最基本的样式: <style type="text/css" ...

  2. inline-block总结

    inline-block的内部表现类似block,可以设置宽高,外部表现类似inline,具有不还行的特性. 与float排版有些类似,当内部块级(可设置宽高),水平排列的时候都两者都可以实现. 两者 ...

  3. Nginx - HTTP Configuration, the Location Block

    Nginx offers you the possibility to fine-tune your configuration down to three levels — at the proto ...

  4. Is it possible to change the iPhone device name programmatically?

    今天刚好方案公司谈到一个需求方案,要制作一个dvr连接手机,手机能上网的功能. 为了简化,让dvr开机轮询,连接某个iphone设备名字特征的手机,希望在app中提供一个输入框,可以 按dvr可以识别 ...

  5. 基于asp.net的ajax分页

    直接贴代码: <html> <head> <meta http-equiv="Content-Type" content="text/htm ...

  6. Linux下c函数dlopen实现加载动态库so文件代码举例

    dlopen()是一个强大的库函数.该函数将打开一个新库,并把它装入内存.该函数主要用来加载库中的符号,这些符号在编译的时候是不知道的.这种机制使得在系统中添加或者删除一个模块时,都不需要重新编译了. ...

  7. Html的maxlength属性

    maxlength表示文本框只能输入的字符串,多的无法输入

  8. linux开机启动增加tomcat启动项

    需求:开发环境(linux)重启后,每次需手动启动相关应用较为繁琐,如设置为开机自动启动则可减少此工作量. google下,参考了以下博文较好解决了问题: 1. 简单说明 Centos下设置程序开机自 ...

  9. 《RedHatLinux逻辑卷的管理》——一条龙服务

    首先建2分区 [root@localhost ~]# partx -d /dev/sdb error deleting partition 4: BLKPG: No such device or ad ...

  10. iOS编程——经过UUID和KeyChain来代替Mac地址实现iOS设备的唯一标示(OC版)

    iOS编程——通过UUID和KeyChain来代替Mac地址实现iOS设备的唯一标示(OC版) 很多的应用都需要用到手机的唯一标示,而且要求这个唯一标示不能因为应用app的卸载或者改变而变化. 在iO ...