Hex-Rays decompiler type definitions and convenience macros
/******************************************************************************************
Copyright 2013 Andrea Ragusa Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************************************************************************/ /* This file contains definitions used by the Hex-Rays decompiler output.
It has type definitions and convenience macros to make the
output more readable. Copyright (c) 2007-2011 Hex-Rays */
#ifndef __DEFS
#define __DEFS #if defined(__GNUC__)
typedef long long ll;
typedef unsigned long long ull;
#define __int64 long long
// #define uint32_t int
#define __int16 short
#define __int8 char
#define MAKELL(num) num ## LL
#define FMT_64 "ll"
#elif defined(_MSC_VER)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 "I64"
#elif defined (__BORLANDC__)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 "L"
#else
#error "unknown compiler"
#endif typedef unsigned int uint;
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong; typedef char int8;
typedef signed char sint8;
typedef unsigned char uint8;
typedef short int16;
typedef signed short sint16;
typedef unsigned short uint16;
typedef int int32;
typedef signed int sint32;
typedef unsigned int uint32;
typedef ll int64;
typedef ll sint64;
typedef ull uint64; // Partially defined types:
#define _BYTE uint8
#define _WORD uint16
#define _DWORD uint32
#define _QWORD uint64
#if !defined(_MSC_VER)
#define _LONGLONG __int128
#endif #ifndef _WINDOWS_
//typedef int8 BYTE;
//typedef int16 WORD;
//typedef int32 DWORD;
//typedef int32 LONG;
#endif
typedef int64 QWORD;
#ifndef __cplusplus
typedef int bool; // we want to use bool in our C programs
#endif // Some convenience macros to make partial accesses nicer
// first unsigned macros:
#define LOBYTE(x) (*((_BYTE*)&(x))) // low byte
#define LOWORD(x) (*((_WORD*)&(x))) // low word
#define LODWORD(x) (*((_DWORD*)&(x))) // low dword
#define HIBYTE(x) (*((_BYTE*)&(x)+1))
#define HIWORD(x) (*((_WORD*)&(x)+1))
#define HIDWORD(x) (*((_DWORD*)&(x)+1))
#define BYTEn(x, n) (*((_BYTE*)&(x)+n))
#define WORDn(x, n) (*((_WORD*)&(x)+n))
#define BYTE1(x) BYTEn(x, 1) // byte 1 (counting from 0)
#define BYTE2(x) BYTEn(x, 2)
#define BYTE3(x) BYTEn(x, 3)
#define BYTE4(x) BYTEn(x, 4)
#define BYTE5(x) BYTEn(x, 5)
#define BYTE6(x) BYTEn(x, 6)
#define BYTE7(x) BYTEn(x, 7)
#define BYTE8(x) BYTEn(x, 8)
#define BYTE9(x) BYTEn(x, 9)
#define BYTE10(x) BYTEn(x, 10)
#define BYTE11(x) BYTEn(x, 11)
#define BYTE12(x) BYTEn(x, 12)
#define BYTE13(x) BYTEn(x, 13)
#define BYTE14(x) BYTEn(x, 14)
#define BYTE15(x) BYTEn(x, 15)
#define WORD1(x) WORDn(x, 1)
#define WORD2(x) WORDn(x, 2) // third word of the object, unsigned
#define WORD3(x) WORDn(x, 3)
#define WORD4(x) WORDn(x, 4)
#define WORD5(x) WORDn(x, 5)
#define WORD6(x) WORDn(x, 6)
#define WORD7(x) WORDn(x, 7) // now signed macros (the same but with sign extension)
#define SLOBYTE(x) (*((int8*)&(x)))
#define SLOWORD(x) (*((int16*)&(x)))
#define SLODWORD(x) (*((int32*)&(x)))
#define SHIBYTE(x) (*((int8*)&(x)+1))
#define SHIWORD(x) (*((int16*)&(x)+1))
#define SHIDWORD(x) (*((int32*)&(x)+1))
#define SBYTEn(x, n) (*((int8*)&(x)+n))
#define SWORDn(x, n) (*((int16*)&(x)+n))
#define SBYTE1(x) SBYTEn(x, 1)
#define SBYTE2(x) SBYTEn(x, 2)
#define SBYTE3(x) SBYTEn(x, 3)
#define SBYTE4(x) SBYTEn(x, 4)
#define SBYTE5(x) SBYTEn(x, 5)
#define SBYTE6(x) SBYTEn(x, 6)
#define SBYTE7(x) SBYTEn(x, 7)
#define SBYTE8(x) SBYTEn(x, 8)
#define SBYTE9(x) SBYTEn(x, 9)
#define SBYTE10(x) SBYTEn(x, 10)
#define SBYTE11(x) SBYTEn(x, 11)
#define SBYTE12(x) SBYTEn(x, 12)
#define SBYTE13(x) SBYTEn(x, 13)
#define SBYTE14(x) SBYTEn(x, 14)
#define SBYTE15(x) SBYTEn(x, 15)
#define SWORD1(x) SWORDn(x, 1)
#define SWORD2(x) SWORDn(x, 2)
#define SWORD3(x) SWORDn(x, 3)
#define SWORD4(x) SWORDn(x, 4)
#define SWORD5(x) SWORDn(x, 5)
#define SWORD6(x) SWORDn(x, 6)
#define SWORD7(x) SWORDn(x, 7) // Helper functions to represent some assembly instructions. #ifdef __cplusplus // Fill memory block with an integer value
inline void memset32(void *ptr, uint32 value, int count)
{
uint32 *p = (uint32 *)ptr;
for ( int i=; i < count; i++ )
*p++ = value;
} // Generate a reference to pair of operands
template<class T> int16 __PAIR__( int8 high, T low) { return ((( int16)high) << sizeof(high)*) | uint8(low); }
template<class T> int32 __PAIR__( int16 high, T low) { return ((( int32)high) << sizeof(high)*) | uint16(low); }
template<class T> int64 __PAIR__( int32 high, T low) { return ((( int64)high) << sizeof(high)*) | uint32(low); }
template<class T> uint16 __PAIR__(uint8 high, T low) { return (((uint16)high) << sizeof(high)*) | uint8(low); }
template<class T> uint32 __PAIR__(uint16 high, T low) { return (((uint32)high) << sizeof(high)*) | uint16(low); }
template<class T> uint64 __PAIR__(uint32 high, T low) { return (((uint64)high) << sizeof(high)*) | uint32(low); } // rotate left
template<class T> T __ROL__(T value, uint count)
{
const uint nbits = sizeof(T) * ;
count %= nbits; T high = value >> (nbits - count);
value <<= count;
value |= high;
return value;
} // rotate right
template<class T> T __ROR__(T value, uint count)
{
const uint nbits = sizeof(T) * ;
count %= nbits; T low = value << (nbits - count);
value >>= count;
value |= low;
return value;
} // carry flag of left shift
template<class T> int8 __MKCSHL__(T value, uint count)
{
const uint nbits = sizeof(T) * ;
count %= nbits; return (value >> (nbits-count)) & ;
} // carry flag of right shift
template<class T> int8 __MKCSHR__(T value, uint count)
{
return (value >> (count-)) & ;
} // sign flag
template<class T> int8 __SETS__(T x)
{
if ( sizeof(T) == )
return int8(x) < ;
if ( sizeof(T) == )
return int16(x) < ;
if ( sizeof(T) == )
return int32(x) < ;
return int64(x) < ;
} // overflow flag of subtraction (x-y)
template<class T, class U> int8 __OFSUB__(T x, U y)
{
if ( sizeof(T) < sizeof(U) )
{
U x2 = x;
int8 sx = __SETS__(x2);
return (sx ^ __SETS__(y)) & (sx ^ __SETS__(x2-y));
}
else
{
T y2 = y;
int8 sx = __SETS__(x);
return (sx ^ __SETS__(y2)) & (sx ^ __SETS__(x-y2));
}
} // overflow flag of addition (x+y)
template<class T, class U> int8 __OFADD__(T x, U y)
{
if ( sizeof(T) < sizeof(U) )
{
U x2 = x;
int8 sx = __SETS__(x2);
return (( ^ sx) ^ __SETS__(y)) & (sx ^ __SETS__(x2+y));
}
else
{
T y2 = y;
int8 sx = __SETS__(x);
return (( ^ sx) ^ __SETS__(y2)) & (sx ^ __SETS__(x+y2));
}
} // carry flag of subtraction (x-y)
template<class T, class U> int8 __CFSUB__(T x, U y)
{
int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size == )
return uint8(x) < uint8(y);
if ( size == )
return uint16(x) < uint16(y);
if ( size == )
return uint32(x) < uint32(y);
return uint64(x) < uint64(y);
} // carry flag of addition (x+y)
template<class T, class U> int8 __CFADD__(T x, U y)
{
int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size == )
return uint8(x) > uint8(x+y);
if ( size == )
return uint16(x) > uint16(x+y);
if ( size == )
return uint32(x) > uint32(x+y);
return uint64(x) > uint64(x+y);
} #else // The following definition is not quite correct because it always returns
// uint64. The above C++ functions are good, though. #define __PAIR__(high, low) (((uint64)(high)<<sizeof(high)*8) | low)
// For C, we just provide macros, they are not quite correct.
#define __ROL__(x, y) __rotl__(x, y) // Rotate left
#define __ROR__(x, y) __rotr__(x, y) // Rotate right
#define __CFSHL__(x, y) invalid_operation // Generate carry flag for (x<<y)
#define __CFSHR__(x, y) invalid_operation // Generate carry flag for (x>>y)
#define __CFADD__(x, y) invalid_operation // Generate carry flag for (x+y)
#define __CFSUB__(x, y) invalid_operation // Generate carry flag for (x-y)
#define __OFADD__(x, y) invalid_operation // Generate overflow flag for (x+y)
#define __OFSUB__(x, y) invalid_operation // Generate overflow flag for (x-y)
#endif // No definition for rcl/rcr because the carry flag is unknown
#define __RCL__(x, y) invalid_operation // Rotate left thru carry
#define __RCR__(x, y) invalid_operation // Rotate right thru carry
#define __MKCRCL__(x, y) invalid_operation // Generate carry flag for a RCL
#define __MKCRCR__(x, y) invalid_operation // Generate carry flag for a RCR
#define __SETP__(x, y) invalid_operation // Generate parity flag for (x-y) // In the decompilation listing there are some objects declarared as _UNKNOWN
// because we could not determine their types. Since the C compiler does not
// accept void item declarations, we replace them by anything of our choice,
// for example a char: #define _UNKNOWN char #ifdef _MSC_VER
#define snprintf _snprintf
#define vsnprintf _vsnprintf
#endif #endif
Hex-Rays decompiler type definitions and convenience macros的更多相关文章
- 类型转换bin()、chr()、ord() 、int()、float()、str()、repr()、bytes()、tuple(s )、 list(s ) 、unichr(x ) 、 ord(x ) 、 hex(x ) 、 type()数据类型查询
1.bin() 将整数x转换为二进制字符串,如果x不为Python中int类型,x必须包含方法__index__()并且返回值为integer: 参数x:整数或者包含__index__()方法切返回值 ...
- The repository for high quality TypeScript type definitions
Best practices This is a guide to the best practices to follow when creating typing files. There are ...
- [TypeScript] Type Definitions and Modules
For example you are building your own module, the same as Lodash: my-lodash.d.ts declare module &quo ...
- [Typescript] Installing Promise Type Definitions Using the lib Built-In Types
To fix Promise is not recolized in TypeScript, we can choose to use a lib: npm i @types/es6-promise ...
- 【typedef】Type definitions 自定义类型
- IDA Pro反编译代码类型转换参考
/* This file contains definitions used by the Hex-Rays decompiler output. It has type definitions an ...
- IDA Pro plug-in defines
/* This file contains definitions used by the Hex-Rays decompiler output. It has type definitions an ...
- IDA 宏定义
/* This file contains definitions used by the Hex-Rays decompiler output. It has type definitions an ...
- IDA逆向常用宏定义
/* This file contains definitions used by the Hex-Rays decompiler output. It has type definitions an ...
随机推荐
- 1、c#中可以有静态构造方法,而java中没有,例如在单例模式中c#可以直接在静态构造中实例化对象,而java不可以
1.c#中可以有静态构造方法,而java中没有,例如在单例模式中c#可以直接在静态构造中实例化对象,而java不可以
- 嵌入式 使用udev高效、动态地管理Linux 设备文件
本文以通俗的方法阐述 udev 及相关术语的概念.udev 的配置文件和规则文件,然后以 Red Hat Enterprise Server 为平台演示一些管理设备文件和查询设备信息的实例.本文会使那 ...
- C ~ C语言字节对齐
1. 什么是对齐? 现代计算机中内存空间都是按照字节(byte)划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型 ...
- Python在centos下的安装
1.wget http://www.python.org/ftp/python/2.7.9/Python-2.7.9.tgz默认下载到主目录下 2.tar xzf Python-2.6.6.tgz 3 ...
- nagios为监控图像添加图片
1. 背景介绍 在监控web页面上显示主机都为问号,如下图所示: 本文的主要目的就是将监控的图片添加进去,让监控图像变得美观. 2. 图片的下载地址 图片的下载地址如下: https://exchan ...
- Python 用 os.walk 遍历目录
今天第一次进行 文件遍历,自己递归写的时候还调试了好久,(主要因为分隔符号的问题),后来发现了os.walk方法,就忍不住和大家分享下. 先看下代码: import os for i in os.wa ...
- 从四大音乐APP首页设计对比分析产品方向
原帖:http://www.ui.cn/detail/63201.html 本文章中作者例举四个音乐APP应用:虾米.网易.百度.QQ首页 1. 推荐内容:作者将四个首页界面划分出官方推荐与个性化推荐 ...
- air开发中的requestedDisplayResolution 扫盲
app.xml里面requestedDisplayResolution 取值可以为high/standard, 如果为high表示设备跟ios声明它需要使用高清屏(其实就是需要最大分辨率) 这里我猜测 ...
- (原创)jquery插件-可选可填控件
;(function ($) { $.fn.autoFillTextBox = function (options) { var defaults = { nShow: 5, //显示条数 nLen: ...
- 基于jquery的表格动态创建,自动绑定,自动获取值
最近刚加入GUT项目,学习了很多其他同事写的代码,感觉受益匪浅. 在GUT项目中,经常会碰到这样一个问题:动态生成表格,包括从数据库中读取数据,并绑定在表格中,以及从在页面上通过jQuery新增删除表 ...