机器学习 —— 概率图模型(Homework: Factors)
Talk is cheap, I show you the code
第一章的作业主要是关于PGM的因子操作。实际上,因子是整个概率图的核心。对于有向图而言,因子对应的是CPD(条件分布);对无向图而言,因子对应的是势函数。总而言之,因子是一个映射,将随机变量空间映射到实数空间。因子表现的是对变量之间关系的一种设计。每个因子都编码了一定的信息。
因子的数据结构:
- phi = struct('var', [3 1 2], 'card', [2 2 2], 'val', ones(1, 8));
在matlab中,因子被定义为一个结构体。结构体中有三个变量,分别是 var : variable, card : cardinate, val : value.这三个变量构成了因子表。其中,var 后面是变量名 X_3,X_2,X_1. card 是每个变量所对应的取值范围。[2 2 2]表示这三个变量都是二值变量。如果是骰子,则应该写成[6 6 6]。val 后面接的是一个列向量。该向量的长度应该为 prod(card).
1、因子相乘
两个Scope相同或不同或部分不同的因子可以相乘,称为因子联合。对于有向图而言,因子相乘就是贝耶斯的链式法则。对于无向图而言,因子相乘就是合并两个相似的信息。因子相乘的原则是能够冲突,也就是只有对应项相乘(因子都是表)。
- % FactorProduct Computes the product of two factors.
- % C = FactorProduct(A,B) computes the product between two factors, A and B,
- % where each factor is defined over a set of variables with given dimension.
- % The factor data structure has the following fields:
- % .var Vector of variables in the factor, e.g. [1 2 3]
- % .card Vector of cardinalities corresponding to .var, e.g. [2 2 2]
- % .val Value table of size prod(.card)
- %
- % See also FactorMarginalization.m, IndexToAssignment.m, and
- % AssignmentToIndex.m
- function C = FactorProduct(A, B)
- %A = struct('var', [1], 'card', [2], 'val', [0.11, 0.89]);
- %B = struct('var', [2, 1], 'card', [2, 2], 'val', [0.59, 0.41, 0.22, 0.78]);
- % Check for empty factors
- if (isempty(A.var)), C = B; return; end;
- if (isempty(B.var)), C = A; return; end;
- % Check that variables in both A and B have the same cardinality
- [dummy iA iB] = intersect(A.var, B.var);
- if ~isempty(dummy)
- % A and B have at least 1 variable in common
- assert(all(A.card(iA) == B.card(iB)), 'Dimensionality mismatch in factors');
- end
- % Set the variables of C
- C.var = union(A.var, B.var);
- % Construct the mapping between variables in A and B and variables in C.
- % In the code below, we have that
- %
- % mapA(i) = j, if and only if, A.var(i) == C.var(j)
- %
- % and similarly
- %
- % mapB(i) = j, if and only if, B.var(i) == C.var(j)
- %
- % For example, if A.var = [3 1 4], B.var = [4 5], and C.var = [1 3 4 5],
- % then, mapA = [2 1 3] and mapB = [3 4]; mapA(1) = 2 because A.var(1) = 3
- % and C.var(2) = 3, so A.var(1) == C.var(2).
- [dummy, mapA] = ismember(A.var, C.var);
- [dummy, mapB] = ismember(B.var, C.var);
- % Set the cardinality of variables in C
- C.card = zeros(1, length(C.var));
- C.card(mapA) = A.card;
- C.card(mapB) = B.card;
- % Initialize the factor values of C:
- % prod(C.card) is the number of entries in C
- C.val = zeros(1, prod(C.card));
- % Compute some helper indices
- % These will be very useful for calculating C.val
- % so make sure you understand what these lines are doing.
- assignments = IndexToAssignment(1:prod(C.card), C.card);
- indxA = AssignmentToIndex(assignments(:, mapA), A.card);
- indxB = AssignmentToIndex(assignments(:, mapB), B.card);
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % YOUR CODE HERE:
- % Correctly populate the factor values of C
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- for i = 1:size(indxA)
- C.val(i) = A.val(indxA(i))*B.val(indxB(i));
- end
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- end
2、变量边际化
变量边际化是概率图模型的核心操作,其目的是消除其他变量,获得单个变量的边缘分布。例如有CPD: struct('var', [3 1 2], 'card', [2 2 2], 'val', ones(1, 8)), 如果我们需要知道x_1 最本质的分布,则需要对x_2,x_3进行边际化操作。变量边际化最大的难点在于算法。比如要边际 x_2,那么应该把x_1,x_3取值相同的组合求和。此函数用了一个巧妙的方法来解决:先由var 求assignment,之后抽去assignment里需要消除的变量所对应列,在将assignment转成index.此时index里数字相同的编码就是需要求和的。
- % FactorMarginalization Sums given variables out of a factor.
- % B = FactorMarginalization(A,V) computes the factor with the variables
- % in V summed out. The factor data structure has the following fields:
- % .var Vector of variables in the factor, e.g. [1 2 3]
- % .card Vector of cardinalities corresponding to .var, e.g. [2 2 2]
- % .val Value table of size prod(.card)
- %
- % The resultant factor should have at least one variable remaining or this
- % function will throw an error.
- %
- % See also FactorProduct.m, IndexToAssignment.m, and AssignmentToIndex.m
- function B = FactorMarginalization(A, V)
- % A = Joint;
- % V = [2];
- % Check for empty factor or variable list
- if (isempty(A.var) || isempty(V)), B = A; return; end;
- % Construct the output factor over A.var \ V (the variables in A.var that are not in V)
- % and mapping between variables in A and B
- [B.var, mapB] = setdiff(A.var, V);
- % Check for empty resultant factor
- if isempty(B.var)
- error('Error: Resultant factor has empty scope');
- end;
- % Initialize B.card and B.val
- B.card = A.card(mapB);
- B.val = zeros(1, prod(B.card));
- % Compute some helper indices
- % These will be very useful for calculating B.val
- % so make sure you understand what these lines are doing
- assignments = IndexToAssignment(1:length(A.val), A.card);
- indxB = AssignmentToIndex(assignments(:, mapB), B.card);
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % YOUR CODE HERE
- % Correctly populate the factor values of B
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- shunxu = 1:size(indxB);
- hunhe = [indxB,shunxu'];
- hunhe_paixu = sortrows(hunhe,1);
- tmp_1 = hunhe_paixu(:,1);
- tmp_2 = hunhe_paixu(:,2);
- k = 1;
- for i = 1:length(tmp_1)-1
- if tmp_1(i) == tmp_1(i+1)
- B.val(k) = B.val(k) + A.val(tmp_2(i));
- else
- B.val(k) = B.val(k) + A.val(tmp_2(i));
- k = k+1;
- end
- end
- B.val(k) = B.val(k) + A.val(i+1);
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- end
3、变量观测
变量观测是将未知的变量置为已知。那么该变量其他不符合观测条件的取值都应该置为0. 该算法的核心思想是首先获得变量的assignment,之后选出被观测变量所占assignment的列。最后依次读取该列的值,将不符合观测结果的value置0.
- % ObserveEvidence Modify a vector of factors given some evidence.
- % F = ObserveEvidence(F, E) sets all entries in the vector of factors, F,
- % that are not consistent with the evidence, E, to zero. F is a vector of
- % factors, each a data structure with the following fields:
- % .var Vector of variables in the factor, e.g. [1 2 3]
- % .card Vector of cardinalities corresponding to .var, e.g. [2 2 2]
- % .val Value table of size prod(.card)
- % E is an N-by-2 matrix, where each row consists of a variable/value pair.
- % Variables are in the first column and values are in the second column.
- function F = ObserveEvidence(F, E)
- % Iterate through all evidence
- for i = 1:size(E, 1)
- v = E(i, 1); % variable
- x = E(i, 2); % value
- % Check validity of evidence
- if (x == 0),
- warning(['Evidence not set for variable ', int2str(v)]);
- continue;
- end;
- for j = 1:length(F),
- % Does factor contain variable?
- indx = find(F(j).var == v);
- if (~isempty(indx)),
- % Check validity of evidence
- if (x > F(j).card(indx) || x < 0 ),
- error(['Invalid evidence, X_', int2str(v), ' = ', int2str(x)]);
- end;
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % YOUR CODE HERE
- % Adjust the factor F(j) to account for observed evidence
- % Hint: You might find it helpful to use IndexToAssignment
- % and SetValueOfAssignment
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- for k = 1:prod(F(j).card)
- Assignment_ = IndexToAssignment(k,F(j).card);
- if Assignment_(indx) ~= x
- indx_ = AssignmentToIndex(Assignment_,F(j).card);
- F(j).val(indx_) = 0;
- end
- end
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Check validity of evidence / resulting factor
- if (all(F(j).val == 0)),
- warning(['Factor ', int2str(j), ' makes variable assignment impossible']);
- end;
- end;
- end;
- end;
- end
4、计算联合分布
计算联合分布就是将若干个变量进行相乘。联合分布的输入是因子集。将因子集中的变量依次相乘,所得最后结果则为联合分布。
- %ComputeJointDistribution Computes the joint distribution defined by a set
- % of given factors
- %
- % Joint = ComputeJointDistribution(F) computes the joint distribution
- % defined by a set of given factors
- %
- % Joint is a factor that encapsulates the joint distribution given by F
- % F is a vector of factors (struct array) containing the factors
- % defining the distribution
- %
- % FACTORS.INPUT(1) = struct('var', [1], 'card', [2], 'val', [0.11, 0.89]);
- %
- % % FACTORS.INPUT(2) contains P(X_2 | X_1)
- % FACTORS.INPUT(2) = struct('var', [2, 1], 'card', [2, 2], 'val', [0.59, 0.41, 0.22, 0.78]);
- %
- % % FACTORS.INPUT(3) contains P(X_3 | X_2)
- % FACTORS.INPUT(3) = struct('var', [3, 2], 'card', [2, 2], 'val', [0.39, 0.61, 0.06, 0.94]);
- %
- % F = FACTORS.INPUT;
- function Joint = ComputeJointDistribution(F)
- % Check for empty factor list
- if (numel(F) == 0)
- warning('Error: empty factor list');
- Joint = struct('var', [], 'card', [], 'val', []);
- return;
- end
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % YOUR CODE HERE:
- % Compute the joint distribution defined by F
- % You may assume that you are given legal CPDs so no input checking is required.
- %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- F_ = F;
- %Joint = struct('var', [], 'card', [], 'val', []); % Returns empty factor. Change this.
- for i = 2 : numel(F_)
- F_(i) = FactorProduct(F_(i),F_(i-1));
- end
- Joint = F_(i);
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- end
5、计算边缘分布
边缘分布是在联合分布的基础上更进一步的处理,对于给定联合分布,某些变量可能被观测到。某些变量可能需要边际掉,最后的结果就是边缘分布。边缘分布得名于其在因子表中处以边缘的位置。其关键操作在于得到联合分布后必须归一化。因为边缘分布的和总是1.
- %ComputeMarginal Computes the marginal over a set of given variables
- % M = ComputeMarginal(V, F, E) computes the marginal over variables V
- % in the distribution induced by the set of factors F, given evidence E
- %
- % M is a factor containing the marginal over variables V
- % V is a vector containing the variables in the marginal e.g. [1 2 3] for
- % X_1, X_2 and X_3.
- % F is a vector of factors (struct array) containing the factors
- % defining the distribution
- % E is an N-by-2 matrix, each row being a variable/value pair.
- % Variables are in the first column and values are in the second column.
- % If there is no evidence, pass in the empty matrix [] for E.
- % % FACTORS.INPUT(1) contains P(X_1)
- % FACTORS.INPUT(1) = struct('var', [1], 'card', [2], 'val', [0.11, 0.89]);
- %
- % % FACTORS.INPUT(2) contains P(X_2 | X_1)
- % FACTORS.INPUT(2) = struct('var', [2, 1], 'card', [2, 2], 'val', [0.59, 0.41, 0.22, 0.78]);
- %
- % % FACTORS.INPUT(3) contains P(X_3 | X_2)
- % FACTORS.INPUT(3) = struct('var', [3, 2], 'card', [2, 2], 'val', [0.39, 0.61, 0.06, 0.94]);
- %
- % V = [3];
- % F = FACTORS.INPUT;
- % E = [];
- function M = ComputeMarginal(V, F, E)
- % Check for empty factor list
- if (numel(F) == 0)
- warning('Warning: empty factor list');
- M = struct('var', [], 'card', [], 'val', []);
- return;
- end
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % YOUR CODE HERE:
- % M should be a factor
- % Remember to renormalize the entries of M!
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- Joint = ComputeJointDistribution(F);
- Obser = ObserveEvidence(Joint,E);
- To_be_Mglzed = setdiff(Joint.var,V);
- if ~isempty(To_be_Mglzed)
- M = FactorMarginalization(Obser,To_be_Mglzed);
- else
- M = Obser;
- end
- M.val = M.val/sum(M.val);
- % M = struct('var', [], 'card', [], 'val', []); % Returns empty factor. Change this.
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- M = StandardizeFactors(M);
- end
最后,所有代码请点这里
机器学习 —— 概率图模型(Homework: Factors)的更多相关文章
- 机器学习 —— 概率图模型(Homework: Exact Inference)
在前三周的作业中,我构造了概率图模型并调用第三方的求解器对器进行了求解,最终获得了每个随机变量的分布(有向图),最大后验分布(双向图).本周作业的主要内容就是自行编写概率图模型的求解器.实际上,从根本 ...
- 机器学习 —— 概率图模型(Homework: CRF Learning)
概率图模型的作业越往后变得越来越有趣了.当然,难度也是指数级别的上涨啊,以至于我用了两个周末才完成秋名山神秘车牌的寻找,啊不,CRF模型的训练. 条件随机场是一种强大的PGM,其可以对各种特征进行建模 ...
- 机器学习 —— 概率图模型(Homework: MCMC)
除了精确推理之外,我们还有非精确推理的手段来对概率图单个变量的分布进行求解.在很多情况下,概率图无法简化成团树,或者简化成团树后单个团中随机变量数目较多,会导致团树标定的效率低下.以图像分割为例,如果 ...
- 机器学习 —— 概率图模型(Homework: Representation)
前两周的作业主要是关于Factor以及有向图的构造,但是概率图模型中还有一种更强大的武器——双向图(无向图.Markov Network).与有向图不同,双向图可以描述两个var之间相互作用以及联系. ...
- 机器学习 —— 概率图模型(Homework: StructuredCPD)
Week2的作业主要是关于概率图模型的构造,主要任务可以分为两个部分:1.构造CPD;2.构造Graph.对于有向图而言,在获得单个节点的CPD之后就可依据图对Combine CPD进行构造.在获得C ...
- 机器学习 —— 概率图模型(学习:CRF与MRF)
在概率图模型中,有一类很重要的模型称为条件随机场.这种模型广泛的应用于标签—样本(特征)对应问题.与MRF不同,CRF计算的是“条件概率”.故其表达式与MRF在分母上是不一样的. 如图所示,CRF只对 ...
- 机器学习 —— 概率图模型(Homework: Structure Learning)
概率图的学习真的要接近尾声了啊,了解的越多越发感受到它的强大.这周的作业本质上是data mining.从数据中学习PGM的结构和参数,完全使用数据驱动 —— No structure, No par ...
- 机器学习 —— 概率图模型(CPD)
CPD是conditional probability distribution的缩写,翻译成中文叫做 条件概率分布.在概率图中,条件概率分布是一个非常重要的概念.因为概率图研究的是随机变量之间的练习 ...
- 机器学习 —— 概率图模型(推理:MAP)
MAP 是最大后验概率的缩写.后验概率指的是当有一定观测结果的情况下,对其他随机变量进行推理.假设随机变量的集合为X ,观察到的变量为 e, W = X-e , AP = P(W|e). 后验概率和联 ...
随机推荐
- Microsoft Azure Powershell 获取Azure-Location
首先要切换至AzureResourceManager模式下 http://www.cnblogs.com/SignalTips/p/4110790.html 国际版Get-AzureLocation ...
- snmptrap使用
SNMP简单网络管理协议,其中其支持的一个命令snmptrap命令,用于模拟向管理机发送trap消息. 启动陷阱方法: snmptrapd -C -c /etc/snmp/snmptrapd.co ...
- ASP.NET MVC +EasyUI 权限设计(二)环境搭建
请注明转载地址:http://www.cnblogs.com/arhat 今天突然发现博客园出问题了,老魏使用了PC,手机,平板都访问博客园了,都是不能正常的访问,原因是不能加载CSS,也就是不能访问 ...
- 非常实用的10个PHP高级应用技巧
PHP 独特的语法混合了 C.Java.Perl 以及 PHP 自创新的语法.它可以比 CGI或者Perl更快速的执行动态网页.用PHP做出的动态页面与其他的编程语言相比,PHP是将程序嵌入到HTML ...
- UpdateData(false) and UpdateData(true)
数据更新函数: UpdateData(false); 控件的关联变量的值传给控件并改变控件状态(程序--->EXE) UpdateData(true); 控件的状态传给其关联的变量(EXE--- ...
- cocos2.2.3中创建精灵对象的三大类方法
1.众生相,皆精灵 2.精灵的类继承关系 class CCSprite : public CCNode, public CCNodeRGBA, public CCTextureProtocol 3.创 ...
- 史上最全的Excel数据编辑处理技巧(转)
史上最全的数据编辑处理技巧,让你在日常数据分析处理的疯魔状态中解放出来. 一.隐藏行列 “不得了了,Excel出现灵异事件,部分区域消失不见了!”办公室里的一个MM跑过来大声喊叫着,着实吓了俺一跳.待 ...
- 爬虫组NABC
Need(需求): 我们小组的研究课题是编写一个更实用的爬虫软件,编写时会应用到学长的部分代码并在其基础上完善创新. 鉴于学长代码已经实现了基本功能,即从网站上面爬取相关的Word文档等与计算机有关的 ...
- WPF解析Word为图片
偶遇需要解析Word为单张图,此做 http://git.oschina.net/jiailiuyan/OfficeDecoder using System; using System.Collect ...
- nenu contest2
http://vjudge.net/vjudge/contest/view.action?cid=54562#overview H B. Polygons http://codeforces.com ...