mysql颠覆实战笔记(二)-- 用户登录(一):唯一索引的妙用
版权声明:笔记整理者亡命小卒热爱自由,崇尚分享。但是本笔记源自www.jtthink.com(程序员在囧途)沈逸老师的《web级mysql颠覆实战课程 》。如需转载请尊重老师劳动,保留沈逸老师署名以及课程来源地址。
一、首先我们用上节课的存储过程对两张表压100万数据(各100万)。
第一表 user_sys我们使用的是InnoDB模式,小卒自己的插入结果是:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAMUAAAGBCAIAAABZ5OJpAAAQrElEQVR4nO2dv66kRh5GeRQ/BQGRJ9+HIBjxBJtOOkxIOoGljSYh8Wokok0sT+qWHDi4ammlnWTSGzthA6CoKn7Q0P1xm773HFn2bf439fWpoihw0rbtc8jT09Pz2+Pp6al91bxMsSYteXp+fiZPIshTD3mSQJ561uapKbLqHE88V8U4sSmSoplbOZjVFImxsWEP5ypLQrp1g+lFE342tkeeYuo8LU8772M2T02RLNKVoEvKNAUuCENS7C0OQXOBPVeZn45zlbk99Mt2f3nLmWE/fp7M8j2V+TixzpO8XtpAksSbOJVpXnezOtKyLtPopA8rjUtZDLs+TdaPNhN+65mCCM1RFVlVFYaAmiKrzlEGgiA4iRkC6yYFQcuK4tX6abn4hvJxITLLccxXnXdZ6Uu1X63PU8fJze2WGHZgeipcOJxhpdrczHKeupIumkEB4+dpKmL6PDVF9++kKBb8tGQYiyHAdtV51Dx51HlalnlalrlRVHWeliereL2SdaU5LDfNU50naXmaS7G18dk8LeU//tYLSVqiqDpBGK2eoahH9/RhnGlgnausaPqImDvOqsaqT6NlzFwdLk9d8XZ10ljccarsmm4ISzj3VKZJXsd5mm7h7n6aaYRnYyxcRedNHZtLfX2XDQ5KsmySiq629D9XQe6C3bmoZ9W5KaamPHaeLlV3SZKXnQq6ggq84DmoztM8D5SRpmmeh3lyO1tqPwXs6idXchZ2noKMDLFy07OiyLKiyIqmqwIn7S7392SvfYU53Xuw6IP4aaYRbjV6prWb37RyK4wt8En7Kdzdheu7w/spXLkpXBXp4xZyNeOMn+L2+JowHTJP9m/UzlPkAr/R5FbogxTmyf+PsUsrOMfxU1OF7ZsoT8NmsqqpDD/1q2bZkp+m/QXBDu6ep+lu9vGTnydXzn6baljpVKZpWQdmubufLtNJo7t6DxszffNpaOV0F2JnK09GfecaXF5Aj+2nDXmyf6NxnuoybPfM+ylMwjinzrvN2nucJmTmgtI+3OjA/G9tFsOK67umtcwwrhh2iWfVOawr+wXd5151RbSH2f7MB/XTZboyzOupF8ZLttOseKI8+eV9rZ9crMYwz0TyAe7fTa/vtnGgPK24vusqrrhYxxX9RlPkCKeSoeVuNMLCfa05nm51O2d1Pp11+DzdyoHy9BYgTxLIUw95kkCeesiTBPLUQ54kkKce8iQhyNPT2+beJb4vL3MOgzzd+yvDw0OeQAl5AiXkCZSQJ1AS5OnvHWjbds2/4XWwe54I05sCP4GSYLzvHnkiTG8KTZ7++vXTp0+ffvn9xxVhujpS37+2P+ftz3n7/uuq6ctcfiDytuWHlZIkq8a/Lm0getz4228//fyvn97/+d9goXOVZdXGI9kLQZ5+/P7Lp1//+vuvX8087RQmx/evdm7mpu/KiiGUTTGUvfFo+mRZf6zw9z//8e63/7T/+2ecp8VXcLwwuvpuJk/tFj99+9yr5d2H9suH9suPtm3b9o9+oqmc2/M0PhkXvn0iSfxHw4NHWabLT9+DYayQJEUT5ml8GsbIVpVZKbHyNK+obhj6dpNey+552hSmd5/7v79/bd/lY56+Dct8+dB+/CP4Aio/Td9kca4ylwpz7rSULD/5FeNY37VtW2VeSZ+n4ZmRjpmn2er31eWpXe2njx9mjvFH+z4fFfWSeRrLc/LkyNo8RSt6IokSFD9vYCSsbdu5PM3I7MU5kJ/m8vTRiaptv399TXmK55Cny3lqV/vp2+cgAR87Ff1o37uc/WjfH91P/qPA7mFMfzNhfecaPTvVd0N1N93MTgjy1HUWjPzy+9ZIOb58MOo1d/3/Lm8/fh5nffQqwW5u18yamz7D9IHNovHa0P4DuDNvlzPfSzHzsoquhZ9VXUvKe2XY5fZ411ng/nn378/jvJn2eFMkq969omP3/syW/vGrWd0NMLPgVX1kt0H/+KG53EfVvrr+zBvDRKReE/gJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQgp9ACX4CJfgJlOAnUIKfQAl+AiX4CZTgJ1CCn0AJfgIl+AmU4CdQEuQJ4EbIEyghT6AkyNPTgblvswBWEufp3sdjc9gDg4iHyRNMuXexGDxMnl6m+r/IoY7k3sViQJ62cagjuXexGOyTp6bIqrNmU23bkieLx89TUyRFM/49jUxTJDO49a7jUKV470Poefg8NUVWFJmdly5bfuCCFcmTngfP07nKLtZhL+mnOk/y+vlUpv0e8jwfd5eWp27+8/Ozt0wSLHFtKc7OO5Vpv8v4g0GdX3sI45HcdE73YWWezlXWOehcGYYa0vKSfnJ5SsvT8xger5jqvEtNv4ymMLfl6VSmiZ0q46C2H8lN53QfVuWpC9HlJvZL+al2KkpT56e6zvM6TEpXwPvnqY+N6ScXqfGgbRZtZh/JTed0H1blqSmKpr9kO4qfxiIc/FSWaZwnt+jufqrzJC3r1fXdqUzTPM9vEtQD56lt13UBvFz7qW8T5aWfp7w8WaX4Iu2nLiFpXlo7C/fmjHVbnfdK8mRl5sa0XCYuxVOZp2mS114dErTHg9ZUV2xRe2v39tPQeouXSDqR9TP7Cdccy6vJU+QpV5t1f3TzwxbXmmvDRaJSPJV5Wfr5sIs0iE33983N4Pk81bnfCJoEpc4DT/kH0gl063G98jwNsYrn91m6LVJxe7wMfeNyU+dJktfjtV+gi7wWXFatbD/VeZLXC02o8YL0liO59nTuiLy+mzbYBbXhcn9BmXdVXJ37jXJfTi5G/h9XFaiZpzGs3TZdXRfGZgiZmzf+Cq4I+avJ01x9tyOzeXKVTHDJXudpWeaeK1x57ZOnHtc9kQRedI1vy5D9x/mOqqUj2fmsX8PDji8Ifvp+f2Z4PeXK0/scNNk3ciFP1oajQ4j7oW64Mrh3sRg8bJ7uxKGO5N7FYkCetnGoI7l3sRiQp20c6kjuXSwG5GkbhzqSexeLAXnaxqGO5N7FYvAweYKHIMjTvWMDDw95AiXkCZSQJ1BCnkAJeQIl5AmUkCdQ8ih5ikYVh7inA02W57rN94ucq2z/8Vyvl1V56sdk9qd5HKEZnPdgYKZffnEJ9etvG/57iDyF85rC+xLm+xzeIGvz5D1i5/4+V5k/2Tuf5yoLFpuU0ObTv5intcxnZU2exiHw3U+nKIroO5OorXmyT5ofsum0V5Kn6Y7jL/ESI5+Pzi1+8mbbIeumXszTWIEGv/+gSr1Y37m5WVUVk60Vjf8gRT8jfLQiWHpapxu/pPh7u0XW1LCvlK15ihtT/RTj7LlCXs5TVFO2bXuuCq9VEsfoYp58LbpH5KemDH4Y3kH0ddlkKWO/k+89LEOeNuSpbVtnEE8KVp5W+Gmm4psYaoufzuEBmHmK9jtb3w0frYp+cuw0oa7N0zB5eIbz6vbTNE/nKourqvb+edrkpzfM9vZ4UPP5lcR113d+FpuqOvul5G1Gnaf4QjWs74IZsxI22k/kqd3oJ7+bab7/yU9XOGOqpXH+WOr9skUh9dOw6fhJ56yqQj8VRhfbhuu7NxysW+q7JS50Wj5i99+F1pE3+w3Xe1f0j9/KVf3jh2DBO/4P5A3H6WHu38FjQJ5ACXkCJeQJlJAnUHJtnlznTdxnNO1/mr/csedE1+Vzl+nD6zqj/b7dS6tDsCZP1jvHp/fzoq696e0Lt5miWdpi0AU/+Tju4LrguPw9YHfFI7DOT2OhzvSz2H4K77N3GzlXWdFMnDPsINDN+KLgSHrX9oZ6x2PdcoTbWVvfjQmI3ucbz+5oCv8ehnuHdJCnZryvUjUuT+E7poO3dbrNzLzJ8xJBd+QbvieyJyvyZL3RN66oFtpP/l2tOE8uH3aeiiKo6/wADXGbOSBzBFL4E3jEWz7HZ1WeFs571LyJlo2NsCJPUST9DARhm8glUKSVp2gl8rQHK+u7WRG0bTvzPwkKluiX2uinoIJ1M4OxfMHmL+QDP+3P+v6C5dJYbE51H69pP7n1uyZbZ6yuorsqT6HBaD/J2dT/1F0UBSPO/Fl2+ykYR95Ly/fTsNBCntrJlEt5skdwz4/PBBFb8uRVa2ZZdfbJqqrwyz3KzMb+Ao+wKXVNnqZj90DM5TxNnmZq26jFVFRVNj6mNIzeLwpDY+PqfuTGjRt+8iJmD5aki/JAcP8OlJAnUEKeQAl5AiXkCZSQJ1ByS57iHp/xdQWL913gFbNxfEH8RHB893dhJOUi8VtWwv4tv9tp2tUUDRUN8TYUzp6+12VxO7COLeMLmsJ/Ejvoxx76t82HzhfzdLbe9WbeDjFHwwUj/RZeyhG9n8N6u9zCdmAtW/M04ycvT75NVuTJLRvnybifsjwazn5jhd+NHt/BtjvUubV3A9vrO/OW7Zo8zd1TG3YyczvHeyHK4mgTMwbGqJfF5aPps7UlzHCNn4YJdp5m67sNeRpxK82Ohht2aRa4fzwX8jfdDkNatnNVfdenZ8f6zpizwk/Wq8mC+87hUNJZP4Uv2KTy28BB20/GnMuj4S6832vaRLuwR28zpGolov4CcX13Pp/H6cabCN3SXn7HzQd15Do/zWyn8qZR861hTz9FG7iuPW73SoWNnGiivyNz9JSxR7vpPa5NmtZxTf/4eOon43UDKI23B/fvQAl5AiXkCZSQJ1BCnkAJeQIl5AmUkCdQQp5ACXkCJeQJlJAnUPJ/1K5cM+alCb8AAAAASUVORK5CYII=" alt="" />
第二张表 user_sys2我们使用的是MyISAM模式,小卒自己的插入结果是:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAKUAAABYCAIAAAAbRaBKAAAHNUlEQVR4nO2cO9q0LAyGXZWFq6FiK7bsw95lTP9fbuLdgX/BKQkBHQ8jfuSpZoRBJjcJB8HuT9SSuqcrIPqpuv+q1Cq6R93TFWAkvO9TpbxFqS6xbaW8n+7mnKqqySW2Fd4lVVWTS2x7Be9ZD2a5oByvqqz8dBWc7uc9607P8XOKdNZdRuF3x1SVlZ+ugtPtvGc9aD3wPC172CDQD4X39bqZ92KGzRj9S/+eVKemv8/YuzsopeLt+vFj0//+/kCeDuU4auVs2mfs3S3pF0aTOlqFWJNTNvVieS9msD68GMbDPc1f+nfg3Y+fvwgXmHFSlqrLc42xv+P9GfuOp85U6vuanLKpF8PbQt4egv3Kv6fgyn0f/HualJowSQvgft4OK+vfAXmsNK9iNOBrcsqmXgzvWevZDblr8e9oYu/f49hT3iHr7f49qa4fp93x/DP2vVLqlIPf3H/vmWL9rv92fbIaIW81fjgr/6T/tgR7NXI3w3cLHn8upv+IN8f0JM1tUSt/RtX3nZpAjETjNdSbW7OS/v72/tuPHmiOzgYCl+guHKnLz3gTPw/R2n6w6bjH3zO2L4pY+TOqcYT8eJMjrPbz6WFSnvekYCecgJwU8nNYERuAvq3Xw7w9dpruWJ9DTsdrI/bXwHVSXaemOHZH7qamC4bFO/vvSXVqKnThcUJxpiZHzYl0Mp6nA7oLon15PjYqG8InBQdt0LkDZvjhkMFZ3rEx2TJDLMdYfSMIabGVHmiEj8fzG5XlHYIomhJNqh9HBXwt2PMe3k5h+tehuBIGZ1yEcV/zE/VSTS6x7UuejyHXgesteDwc7A2+oyHdl9rgzRVMqkDn4SdGjpfY9iW8H1JVNbnEtsK7pKpqcolthXdJVdXkEtsK75KqqsklthXeJVVVk0tsWylv0U2qkbfoPgnvtiS825LwbkvCuy0J77YkvNuS8G5LdfImu6awwu54VuXUULzLspjh/uf5NYndjww3qsQdLsguaGMLtC+1oPv9d9ubquAd06IN3M/Y83SvEM8bbDEPnxczwMvg/y5mQNkSC35tniLvvcqz3MM7bsEDe3yiPU5vynxIRd78n4KNIL32j/DOH6bw/+QXO7uu137/Bsl8I7BXN3knwRF0DcnRlVw8D6mDMTopTc9wo2WMwUAod9pnZdyXxLv4j1/j62XetDN3V5h/FyCUeZOeYF3Xxeg0Wu7nDcNKOAKVRhrUcEElbFtLc+XuSwwR/vE/w3td1+CBwKk43jv8OxPYEw//xr8XXAGWN7lvNp77r4l7L2ZIxpyv7MJ38faX/RmDw/13yhsaEoF8lHca4xiLvLID3xqvoX8Ng+Cx8Tk03WzMAkmAYq7mTTteHM9RQlJybkj3zqn7hn/DaXZ+/g3p44TUrWN6pOLyan2pf/ui6UmZwRjs35pZYog3To7YxOv5iFat9sfzkjYWVd64PLHRO4PkV8X1zfW1szq0vlaFCn4LG/CrcFe6fi66S8K7LQnvtiS825Lwbkv7eIc5KJ0zp/Pv/HCVTyHzntw0yL8uhtz3TUPjKpTy5t65lq6nIyjhCXG62NF1ei6ViJbwkq/xBsfAhvbxwungPeL8Oxo9M8/k/Rs/J7KFLGbQM/f0IazEJ0UkQePoag2oT2YFvEHx8Rxu7uj0TB2M828D1sgdOsR7juumZg688Tu80NtiQjGZN8lsCS2XvGrN804lvPNvTYyBuNB/w1Vlyjvw43lrjWI5BOybQ6ZC7BNo3ETfuKR7hxjeBbuQ7pXkpR61gzdpMpARagyJc6IQw/EmPxLeVmw8zzrSuq6Zl+iiHC7Xl/6NOpCQiPZaoOI3+Il/c8rNx8rWKnbn9uuR/jv83g4ZrMfbQH6IN44A0n+vxfm3HdTSXVshie+/0T425/TQv32mAu81ubLFm99Blt/f0rDyvEHYZm1pvXcwBm3PJky/nI8B4a78CO90b4Uo4Z3sFl5X0mNrY4a4Ddjv7tOaCQPx57BJxMIZ/wZNgNtsIksoJyXr521JeLcl4d2WhHdbEt5tSXi3pf286Yw3HhcrrquKqlLx+Rg9UUKfjhR2ohSVnBLlZv140p+UCM6lwGeoxdUDmbIXno/NGp60Qetgfn2MPVRU5G1/obXGlNByzJ41UDYfW87eEhtRmXfGvwFvuAi2g3fIm7M8OlqYLYc+C0kL8zm2c7alrXjOPtLYwzu3pu1vwqfhc8XZaL757AseXuZygtLbGmxs+7e/wPPOxvMDvNlHcWxJMOesKTSYyuZs+Onojnju6N4bzxfmBQqF7Oi5icE7n2g5TE57qcXYXkX/vbV9tDzQwke1N8ohW3Cao35oPnZtPOej67KAEwzg3U+0zOy7OQo3XYwBe7OaiuzX+TcpYD9v/gUK3HaLWCY3p94qh0aUFodrO9bXGINlODdqwldJ1s/bkvBuS8K7LVHetgd+pCqiH0h4tyXh3ZaEd1sS3m3pf8xSQak7N+UEAAAAAElFTkSuQmCC" alt="" />
两个引擎的效率差异明显,所以我们再使用中根据实际情况选择。需要事务的就选择InnoDB模式,不需要事务以及表锁的采用MyISAM模式,这样极大的提高数据处理的效率。
二、select的时候MyISAM明显快于InnoDB。
select count(*) from user_sys;
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAOMAAABRCAIAAACv7oZlAAAIrElEQVR4nO2dMbq0KgyGXZWFq6FiK7buw95lTP8/buLuwFugkJAEUGccmJOvmiOIEV5DQOR0W5X69+/ft01Q1aXu2wbw+qdqQU8iUS+p/9WheixxqsceJXXblFRZ9djTJqmLHab1PUVt26akyqrHnppIXWxnl/CbwrjYTpA/75qqao9vm4BUjz0VkbrYwdqBJ9FRC1FGJyqpn1I99lRD6joN2R79UZ86m87M4O/X2KO///vvNfaSPf34utwefIIzJ1zSGIMuF8xlzbpqUIpUVCO0emL7L9eJt+RWG5+UROo6Dc5vrhPjVQ8OH/Spr7GPapYl1eeRfu+tVIxKntR+fIGnCAAwG3cRavoNTM6R+hr7jueVMeq8Jbfa+KR4Uh2e+UHScz7VoyD4zQOJnE91WYwxt0idvfvse+9T59mYGTPo0Pk8qTuQrE/1sAajeSU9MG/JrTY+KZ7UxdplH85X4VNBrYcWvuFTvbsrag/2eIDj8Knj2MekSpd/v0+dTdePc3Hv/xr73hhzy6lWQeq2lU08PeVTD2/Qjy/ecSb9LfSpsGHvkLpfyoyQVDO+OD4eiVMde70Z2TpAV/Ne9l4EUB2pHI03OcyLi1PHU71TuhXukvoaTd93ZgY9KhpRoajVmRLFtR+PU9lbfI1955zvnrgfuGJLhaRGvtX37e6HS8eRbcm8QVJRewA/4UYJjEtNOFRMj9iMUnvQg6/RjCMkD6KALhMS3e/bAxmZ1NnAeyQIzgb51ig6uuDlmyH1ADZO3ym9B2ux52D+9j1hIhK7Seo8Yh/piZxN15k5zAsgF7c/Tx8hNY5TZ+OeaSlUjaf8rllytXmv6H7vT4dcb4gNmPY4fOY+ckEJ2JN0wXntQ33SJvdHVHCWajTOZc8GDqugQ/WAwh+XUJHmIvbHwJXpbw8DeeDr08LzdeHxqZBUqff/oJgRVdRXkX490bvt0eT7ev+9COc9Q/Dh/ehs+nE0wL/BWbIPkLrLT4p1yJf74RPn1fc/5YnXlCUfpgCpwbVU+d4ftMBtZUglf7inAoan2KeHMdi13jdTM1zBkQnxvOqNsd2TSDRI6rOqxxKneuxRUrdNSZVVjz1K6rYpqbLqsUdJ3TYlVVY99iip26akyqrHHiV12/TbVBVRpaSqVJGUVFUbUlJVbUhJVbUhJVXVhpRUVRtSUlVtSElVtaFqSX1iFez3tC8//+E7fLukr6jh4v2w6h/VLFrsD1dbr9OAcu7nn/tYpSVSwQ2v0xBqTbrjuIJUBRJJBZ/0+9+hGbbFIvTWaUDZSEMk2o3XWVKfbH18Lf/F2GK7bhistWH7Gf6eT1eGKk8qX9sQX3rsb5GKDEVPbGrnDiX1rE75VJDM4+uOZkgFUQNs7iiMiHbEpEEGPDiFrxKF54oUTr5PhFaH34sFxQ/Tis6Nv8E9PiuH5RB7wPl22a+02GAcZ5szY9krbv8yWLpd/kYKq53aQ8rGxodcRxPHF8K5LitLahy0QpvoXXjTRFKZRFicT4a7CrCpkQmST6U58RH/JIqkwq6C3kPa9/Op5LFF6DC2bQAd1xxy78XfSGm1R/bIJZMy9luleZ4j1V+u6xh4UJYSn+pqmnWO8PkO2wkwqYwBAqk0Z3zkODHhU0NzkhvMbGsgBk/Yh+VsQwnSb64mokcuX+3pIIoUEgyAnkVwyPdUSqo31ONzL04Fe66IsQRpI7E04aJsTsYS0kblpL7DpyZJ9RzcJDX8naz2knAf7ZfjTCSnle4WWa6CERVXkes0XBz7r9MUZ0PcLxZuJZRIDaxMKWdAc5IeNuAH766cVLk98o9PlEOw7TSp5EZKqz1JKlOIqxVrh3BDTJ53KO9T4bSpPJ8KKxgnEKfATM8y0T4el1ADwkE8YqDYkJzCqCVkHKxN+lR0rZRTzY/92dCP2naGVP5GCqs9gxdTCBkKxHneROyp3j+lJT29/8MTM2KoensfuUaUadsLMHEqeUd1VxmI2xfrNX742UTKucw3gVrve3/V1xXPDlDg4IzZp6WkqtqQkqpqQ0qqqg0pqao2VEyqD6/DJBkWmrAWgmw+JZrNkSZ3/PqPSM8E9KoviyWVYkh4iHHyO1dzq3fskioRvQYjf4YLXEPSk/0npox+WIJPXdml6/x7I0ACXjbjClmnwS7ETx4XQC7yKII46qtzk8AebqmCqiGJvX9ga8H/KyVOdlrsME3gNfUOHSJ18RAO0+JJBe8Vh2lF/1XAF3O8kT2JK5qUfvNraNXD4kiloSDtthNxqkeaIdWTx5NqLer5IZoHyIJB7CJI/HD9lZdGPyqe1ESLRmFklDf2YgWkRrBDuhDGxCEit86RStcpKantSur9Ree1bRs/5MI59lwnfSoKN3wiWsWNis+Qpz71h5SYpUq3czJs9ctrT8ep/nwXGjsv67r9S6Rir6txartKz6e6ATNaJg2T+DjVI4FnqbxPPTIlSN3IkRypbJwK6VSP2riSpIJOnqXAecxhmiwkKqLx5CwVEA5Zr5DKLqNWNSmG1ABP/PmJD0anaQgfF+9TAYO1jOsNp0OYQ+GMTwXwog9j6Ip9dZJ/SPreX9WGlFRVG1JSVW1ISVW1ISVV1YaUVFUbOkVqPIMZdhRJvlVVqe4rt5Yq3jWF3zaJFpAkNT0hGn1dgI7jE6Scqh9Uci3VYjtrmaUq/p2+sOVPktT06ma0hBt/PGCtjd5F0Jyqn1WWVMGnAlLhi6Q8qeWrm8mbevHVvb7T/wMq6P3ZRSQlpN5b3ZzfT5I7zu62pvoBFfnU4wBPqtj7X1vdfJTI7i1Dlm3jnLqy73dV1vvvXL6j9z/jUwt7f5Bz+dCGyKqv6/E49cTqZmbxtsBglLK+fUNk1dd1dZbqau/Pr272OQH49OwYcprzYxsiq76ut/rUqIDy1c0gZ2JIxHrOKCe7abLqB1T0jiowQb4uQVJMVB+TvvdXtSElVdWGlFRVG1JSVW3of9mTLYcqLXv/AAAAAElFTkSuQmCC" alt="" />
1
select count(*) from user_sys2;
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAOAAAABXCAIAAACSgN57AAAIxUlEQVR4nO2dPbqsIAyGXZWFq6FiK7buw95lTD+Pm7g78BYoJBAiyowTPfmqOaIY4fXjR/Q0i0i9VXfQBSQ0F5zjhN7v9z8ZkhOJk5x4FFARkhOJk5x4bgXoZLth/kxWy7IooHnJiUcAoJNt7BR+pwxOtsnIH3dOoqrh1yEgyYnn94BOtrO2owF0sEKC0YEK6LckJ55fAzoP3W6zfamDjqYxI/j71bfo73//Xn2bi6ftX6ergU5w4YRTGmPQ6UK4ZFhnA+IARSWSFk8c/+ky8ZFU1XGZcoDOQ+dcch4ID93wu9BBX30bFSgJqN8n93utnGJC9gFt+xe4eUC9j8adJA29go5jgL76tqExJYI6HklVHZeJBtRRuT/uuc5BPQEZl9xI2HNQt4sxpgrQ0Ztl23oHHUdjRoyeI+b7gK4ckg7qGQ1B02L9lo6kqo7LRAM6WTutA3MRDgoKO1RshYN6cyuqBnJ7YGJz0L5vY0Bzp/+8g46mafuxuIl/9W1rjKmy0F/3QUtmjq5y0O3eb/sXbZOsu0IHhfVZA+h6KtNDQE3/orC4pA/qkGtNT5YBOpv31LpmXgqgFISV+O2L6oP2h5ogvvBrAX31pm0bM4JmEw2SUI/UhRL1Wb/eByUv8dW3jbPaNXHdcCYWOYBGTuobcPfDpeNea8kMAKuoGoAruI4/YaCMfWJosrWXq4Z046s3fQ+BgwSg04RE97t6bJIHdDTwGhPyRoOcNOoCnfB06YBunMbpK5x1jBb7BPG3b+6YXlYloGOPHdGDOJqmMWMY4SNDW2+jrwAa90FH427lXDc0nrM7F8nZ6j2g+iY+HUV9oANAVMPmkOtgBCVg32iCVa2D9qQq6gdJcJqpN86gRwNHStA+PZfwxylCcrMKK/0uT395mMONWp8WbqsTd40cQHNN/BdFDJKiBilpvJkmbO0pfq6JX7NwXhl6GN41R9P2vQFuBqe5vgDoKj+r1SDn9iMiysPXP/MTplwkX6ZgWW65mmm/iQcFX60dQJM/3M0Au57YwcOw6lwTu1MyVMZRCPF8aMVw7QISbgjotZITiZOceBRQEZITiZOceBRQEZITiZOceBRQEZITiZOceBRQEZITiZOceP46oCrV+/0WCqhK5aSAqkRLAVWJlgKqEi0FVCVaCqhKtBRQlWgpoCrREgvoFatOf6d1lfeDr/BTyr12DJfGhzX1qEDRUnq4qHkeOrTnevyxN0DuBCi44HnoQqnlrjguoMcrEHT4NaAsoODVd/87lP4yWXSyeejQbkn5M9VF6yigV1Y6Ppd/+2qyTdN11trwURb6mg8Xxr0F3smANJVpD1C6kKnzhG1/C1AUKLpRuQ9b/CVAoQ5f+iEH5c/it+4ACroGsJajNiD69GPaQsCNQ3ixL3M7JZl7Ub4ffk8WZN8NMzo2fnt1ew8b5pPEA46303qmyYbgqNhcGNNacOs7tbnLpS+ksNjTeJK8cfBhr62KqRPBi7fTskSHMtoFNO6QwlAyBcMCSiTC7HwyfPueTI1CyDlouifegoqMBBQ2DOk18E5PpyZ3KyKGiG0BxLjqyLdV9IWUFnsUTz7nJI/1UpmWDDYvnwQ0ZN4QzKBdShzUFTBphfBuDq/dE6lEAJmCSfeMt2wHMg4aajG5wJ3X/7M9JOxYe7GhhNxvqiSiO22/2PmeUpJJCAAaCmG/89CdGCEt5YD6+Dw1dX1Q8CWSbIchqZpsbpmTknsSkSRVUw7oJxyUBdRXfyWg4W+22Eu68ugrMi7E5DC0z/GhUVDBIIkqv/iGKB/Fz8MQ74binyz8rg6TGhAZuFs/3TNpRgN18OrKAc0bw/5dE+2Rie0woMmFlBY7CyiRiSsVa7twQfE+dcPXfQeF053ETYJbCCIhsYDQtlDnIJyJ7HWHjXgQkNKS7JkZiIQdO2tZB0Xn4ix0fxRPduvS2I4ASl9IYbHv0ERkknTz432SvsQhag818ZwmfjaeNZp7K9sNrfs81X10pm6LCSt5klSrHXbvL9IOHnxLIp1qwcsdUOyzeNXPFbfNKVJwyutLUkBVoqWAqkRLAVWJlgKqEq1iQH2POUzoYqH55Uy/mU6JpmNyszN+KQYxraZ6qkhAU/oSDGKK/Jo/av2Mnbgc0cOq5M9wgnMkeqD/xJzP85Rx0JlcGE4/3QEA4DUqLpN56OyUuOJ2AmSIWxaJLZ+dUwTx1DwPVv1O2SY+IDXh/+oRJztNthsG8Oh4ZQ0BOnn2umHygIKHft0woy/i+2y2x6UHKUVzyHWPhFU/EgVo2s1L22amD+pJJgD1wNGAWouad0jkxm8mIHJ9Ib6n/sqjnWeJBpSpyKiLGO0be1YBoBHjECpEb2J/yMQpQNOVQgro7ZRr4rNWtSwLPYrCe6x7HXRQ1KfwiWixNMp+Bzh10PuLmWbiq5ftkvpVrIf7oP541+11nura9lOAYo/VPujtxM+DuqEvWo0Mk+g+qCcBTzN5B912YgBdki17gJJ9UAil+uc9xQIKWnKy8p0/dsOAXnyOIDw4zQSEu6NnACVXK6vuJALQwEz8TofvaA5DF97GXQf1nbWE0YbDIcMhc8JBAbPobZN0Pbxa4vOlz+JVoqWAqkRLAVWJlgKqEi0FVCVaCqhKtA4BGs88hu9ssI88VarT2lvNFH9LhP50UJoBCyg/kUmm5g6JvmqheprY1UyTbawlVo345+yZ79+wgPKLiMnU7MamsVYfYT5au4BmHBQACh/37APKLyImU9lD9Bn7s1XQxJPrOUoAPbGImExlD4n+JD80prqvihx020ADmm3ijy8iJlP5Q3RJ3bNV1sSvOH6iif+ug07k531V99XlfVDe8chU9pDcJ1wV02fo7DTT2SaeXkQc9iSXGHPrjiN6iU8Aq+6sjzpolEH5ImK4J7nEOL/uOG3xdYz0JBU9SQp4JK9sICkdqk9Ln8WrREsBVYmWAqoSLQVUJVoKqEq0FFCVaCmgKtFSQFWipYCqREsBVYmWAqoSrf8ZGLsH5NSnPwAAAABJRU5ErkJggg==" alt="" />
三、现在我们来建立一个索引。
在navicat中选择库jtthink,再选择设计表user_sys,.
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqAAAACNCAIAAADn819TAAAbrElEQVR4nO2d3ascZZ7H6zo37sUyc7lHWJjVBVkiFkkTxoSNFwoj7s3ACQN5xKZBZ2EuVMzZuGcZL7bYSbIpXI0EZhPFmw0l7AZPmsFEMQuKF7E0swo6Hc45uclEneQ0zB9Qe/FUPfV73uqtq7pe+vuhSc7prpdfPVX1fJ7f8zzVx5knnDm9M7DX1atX5wDUzdWrVyMAAOg8jqi2WvcxBA96AQQPAOgFEDwA5YDgAQC9AIIHoBwQPACgF6yQ4H/22u+yX0s3BeglEDwAoBdA8BA8KAcEDwDoBcsT/MbT+w+O5TdPbK456+NlCX48HtMj39raor+Ox+Olm6IDhJ7ruF6YsUTA9AVy1go912FBTRF2DwgeANALahb8xtP7nRRJ3prgP35mzZGpWfYVBP/6668fPXr0ypUrWq0eem5vnRV6LillycztCV5eKGBKYAFT4pUPwnEcfRdiHWNs2Z+WAIIHAPSC5jL4iwfXNseS7x3HcZy1zY3Y7vufOSHJXs3vGxD8lp3xePzOO+8cOnTo0KFDhw8flhwfMMdxXcZYngw7SOi5igoDZpKjJFz6s0nwBfaZI/jQcyVxMybtJmDil4AZojXsgTQ6DKtkf1oOCB4A0AvqFvx4fe3pj8+c3jlzYnPtwEUluU8UrufujeTxpTL4zz77bGdnZ319nTv+8ccf1wTRw25nYec4fWWMOSwwGnipgg+YuoB9N4ZP9NXlfWoBZH9aEggeANAL6s/gxwf2P3MiMf2JzbU4ZU8FPz6w/+AB0l1Pljlz+uNn1loQ/FtvvfXss8/eu3dvd3dXOF4TikErNi2S/mSxitbpHK8QMEu3sbwRuVs8sZ5pR2rcJDAqfBakMaexOa6bdoW7XshX8Zi0E2WDyafycZFjMNjY4Gyz4PWE27iofHLURbI/LQkEDwDoBU100V886KwfPBB3uW88vZ/n9HQMfkPvul9KBq8TEbtvbGxsbW1xx589e7ZQZW8UvCFFpE6RlrP2C+gbIdvQzG0kXYqoVyhaCTUjg6deF80KIXjtU/GxNrCuBGYrILkQlEXNx6y8q2wt+9OyQPAAgF7QzBj8eJ14Oh5ut8yiV4z+8caJmmIo9kU3vu8fP358Z2fn5Zdffumll3Z2di5dunTnzp2ilb1ZizwhlsaUlVaM4kkT2kb0/NuwjLKFWPDE1mLF4oKnTRNd8Nqn/GOmZd600LSQdemGnms4NFuZIYMHAACZRgTPE3RF56SLPrHc2uZG7HjB/rWnLy5N8GfPnlXsfvz48TfeeKNEZW/TYvJ7rCh7fpo3GEw2kpjROMJs0nwsUtJjwFzueiG8xgTvuK59SmJ+Bm+bCZfVk59+oJVQ9qclgeABAL2gAcHHT7dfPGh/TC7tol/b3BivO47jHLg4PlDzRPpswb/55pu63Yv2zAvIyHjanRx6nmpKSVgB051q2LK2Ee5QxkiPu2EZJbqkK583AdKf1PXqzuADWiIK5nlzBRSsraiPC9ClCn6a8YMJCB4A0AtqF/zFg07y/JuYUS8LPhmVT+bSH7jIn6nbqPthuQzBf//995cuXVrU7kIxvNedMSoRaVYaXc4xetSAYSPauLZxGXUjxR5Zp+4nPy8g+DRAQ76eNYteG9EgIeoj8nRun17ABT6F4AEAQ6RmwRuy8LQTPk7oky76/c+cuHhQ9NYnTYHxAfGsfFOC39vbG4/Hu7u777///iuvvLKI3ZdPlfFjxZcZ08+WhmkYvi9A8ACAXrBC30Uv+Prrrw8dOnTs2LHd3d179+4dP37c9/0lyWFB6vZxZqbaLG01LRYHggcA9IJVFPzly5f5k+7Hjh3b2dn58MMPl6WGDNRead195s7uRXfYT8e2CgQPAOgFqyj4jz766Mknn3z++edPnz796aefLssLYCBA8ACAXrCKggdgESB4AEAvgOABKAcEDwDoBRA8AOWA4AEAvQCCB6AcEDwAoBc4tNoaHi1qAAyVti9qAAAohJNfnwEAAACgb0DwAAAAwACB4AEAAIABAsEDAAAAAwSCBwAAAAYIBA8AAAAMkE4IfjabtR0CGBS4ogAAAIIHAwRXFAAAQPBggOCKAgCAQQn+Z6/9LvtVy14qM5lMDuVx7ty5tsI7d+5c10KqTJErqiNXRdOsyGECAHRKC/78+fNHjhzJttSRI0fOnz9ffJsrInhRPhlfHdyiUJXYxK99dDwyeAAAKC34XLtznnjiieLbrKs6Ho/HVJZbW1v01/F4nLuF0HMdFpTZZ8BcLyy2qE3w9M0Wk+YMwffO8blX1Iu//cTYBHzxt58sJ8LlsCKHCQAw0kgGf/jw4VYyeF3wu3/+5NL28X+7+debn//FxvW/fPeb9a/ufpC5jYAZDB8wx2HBPGBOjOsFnuvI5Iq+uOBtQg0917Rnbd/l2ykivAsXLtDYLly4IELKWT8tHRU1lMzwyIeh55Y+Ck7uFcU9p5yIot088eUwtxyziLlc/KHnGi4hbQ/pMgXalgsd5jxMrjQWJGGIPcb3SRoePeqsi6+JwwQAGBnUGPx4PN5KeH/r8n/87z+cvLHv5I19r33x4zP/97evffFj/ut7sxfu7/2grBuq2kwrNcVQcg2VVD8FqqFSgjcJle9ZqyGTN+yG1WvNrPD0CDnZR2duGhHLlQgv3lTjgq8+jqNYzHzscvzyFcaCeV6RmM4WvcwKC77qYfL4A8bvBRbwPfLLLRU8/y8JJfRc1/Pk4mj8MAEARoYmeGGj/959gev85I19l2//Koqiy7d/Jd659Ae9uz6tjmNj2pL5+LPqBlWyZGO6bBB8HJZV8EqIZVHUrgST3bUQ7zZT8OXD67DgZfRDV9uLLKCnyXhg5tRW21MXBZ9EEnquk7R3bVl8E4cJADAyqEl2QvC7f/5UuNwo+JM39n19V/tr8SJDFimnWknpb1XJ4AtijM7Q16A0LALmMM+wTF6nvRD8ITL0rnczWB1fsIs+O7ycNL9oVd+o4EULxRKsONzkauFXlC74vD6NZGVLEXRF8J5oeNJTLcm+4cMEABgZ2iQ7zov/9VCu4N/9Zp2sarAmY0ytckRVtdgYfCXBByzehRAF8Ue6b1OCFDAnV+/2SXa64M2OL5TBlwlPG8wtXtUXnGQ3Ho+F8PjPL/7nR1e2Xz118+HNzx84dfPhK9uv/mnvrr467YVI+3RszUG74JM3yMphKGf58nZLpra2w3zlrY/vnDq7c/SpW488tnP0qTunzu599528qqkdya9zVxE8i1sAjusq3RaM8bum6cMEABgZ1CQ7wb9+8Ve/Dn/0P7v/yF83712KoujmvUvinV+HP/K+fNC0KqlOkjpHq2EqVj+LCD70XF6xSmEYp69pMwYK5r1U4ULkFebc2Xtny4Wn+b1Q5y6n4BVFH6wYj8c/7P3x3Fc/5e2/KIr4D+e++ukPe3+0bEC0uozHIl9Ali56LXV1vYIHXfjSUw5z7+7d2z//xa2H/o6+bv/8F3t3laZM6S56utpc21bThwkAUBjUGLzg5I19p37/E+M4N+fU73+y+fkDdBXzJDtZ8HHNFXounYFXOIUXaswILCLz7Oi6gecFtin0Yu/xMZh7wHMjNKbsBdsfed2wtBe2YHix30muXGJIvprgt7ZPig4eIfiTN/Zd2f5nZcVknEG+MOZyE4Z0tWQInhxrWpLpp3rBkhGAaoK/c+rfFbvz153TvrxeqUl2jJnO6jIPEwCgMEzBV8nghVBcxhKPq8PryWNqls7EHKjgbda0CX6uJjmhx1xXzoMClla8dK2CVqTfZKd30etNEMtmtAQ+neRfIjyaDSdeyOgaUKl2RZ26+bBR8KduPqRFl6o9nrbhadPHRbwZgrd2hFuaY3X0Xe8cfcoo+J2jT6k7c1LB82GI3Fn0c+M5beMwAQCDmmQnePeb9fJj8NTmAXM9L6lY5NrGUR6Jt+YrGotk8HNZ8Kks1eqvuuCN0eptkWzBG7papbeKhWfsuC/RQ1/xitr8/AHjGVE6e8gVQZ/nE19SEB9Qeqi5GfxcWcGKUpbVzHfrkceMh3nrkcdMOyPz6PTxK+n5eKU0LEezrMMEAAxqkp3gq7sf5Are8o035ImfdGqQIviKc3yNabpNn3bBi6ozrU9NaWO61oKCL5zB6yPsekQFwpPGteWtNyx4Wwb/m5t/o4Yiz26ks+hSLUr9PqHpOfjkuOj55ItZzplSljVn8H//pHKUibaT6R9GwYtHTrTvJyLvtXCYAIBhTrKbz+fvzX6ZIfj3Zr/U1kgqYG1SL83XRIVu7m7MdCm1eNUMPpCHMfUfpZ+sXaAFsLVFjIIPmKM9q2fsg80LjzpB21Dxlkq1K2pr+58sY/Cv0sXULglDIRM5ik+1DJ5/mM6d0Mek+e/0apPLstqpvfObM+Yx+FNn6WIB43l4PG+ez/4g0dKkXQ5bm2rYymECAIY5Bj+fz+/v/fDe7IXi32S3BLJbRTrLj1CPtkwG3yGqXVHlZ9H3ksKz6AEA/Wawgud8dfeDd79Z9758cPPzB7wvHyzwXfQN8txzzxW3+2QyaStOju2vx3I6/rdnKl9Rf9q7W+Q5+L6z9913ec/BAwB6z8AFD1YTXFEAAADBgwGCKwoAACB4MEBwRQEAAAQPBgiuKAAA6ITgAQAAAFAvEDwAAAAwQLor+G87TNtlAwAAAOTQacFnf+NbW0DwAAAAuo8q+LZzY4m2VW6m7VIBYNm0UjcBABbEIPhW4tD5tsOCb7tsYroTCQfxZNO1eArS07ABABB8aTpVRG2HIIF4sulaPAXpadgAAAi+NJ0qorZDkEA82XQtnoL0NGwAQO8FP/NHI3+mvjudKH/HNV1mOjEsD8HXAeLJpmvxFKSnYQMA+ih4zd4WldM1IPglgHiy6Vo8Belp2ACAgoIPPZcFyU+uF8ZvB8yJ39Z+DZiTLleFhTL45QteLgqplJQSzH6vZBGZP9B3r52rdBERRcAcdZG03cQC+XfTyTXHE3quWDreV+aBB8zQbKtUTtYzpR2mefP8gJlHj9t68JXjqRup/FzG1OB5+AHjB5H8b7pklho2AKB2Sgt+LlShGCOtK9J1FnG8VfDZCbzjTKbc+5a8vhnBW/WpFGAsSaXerah5W82bVvEkCK0xlnwmnTbaLpNadVzwxnVy4xGbNblbfT8JctHWT5F4LL+KeEi7hJZK1as6Mx7TpWBtUtkbJfJG6U0rR60IXjszZOsQPAA9JV/wUuWrJzNpXRAw1wuN6VclhWUIPjH0dMJtHkXRbMbfmvmjyVT+KFpCBi8dtuzC+Xye1tRxZSrlztVNlt2XkPwfKucs/lBJqg3UlMFrgVm7M0QuufjVUzAeE3GLw/U85nperP64tVpIrGXjoV0KpGQCJpVy6LnSYhlxBMxx3aR1rRendAEEjB+W63lqgz0nbABA1ymYwWvZusZiVZ+B7C56LUMf+VP5Y5vGmxA8SY/4j4rgqdBCz2WB5pZKSaGtL0HecMBj4acw7SM3ys0eT3JEWUMvxnjiLgtjf4ZpB6bGUZ2CNx2AuUMiYC4LZMFW7p23x2PpElAHEuT3cu+29CgtlyIRPGOu64VhGLfOte1C8AD0lGKCj6WRUaUELE0N5OWqDsbnj8HP/JFI06cTxyE5u96NLz6rX/BKB24q0NT6nptk8B5xSTMZvOhKYcE8YGbBKwubtpLbBtBPq9UEmZ07qbNkwZNRjZozeE2Pev+19WjjYqlxToDN5Wbrp2l5kX4X3ulG+41yS1PfNAQPQE8pIvjQY4y5LLC6YB56ruu6ak09n88XmGyXJXg1f6csfRZ9wBwWxNUikVOsNKUnPGkqyWMddQte8lKW4I0W16KJj8MkoiLxSAJVM0gayrIEnxUffVPvd1h43qht/2rBm28bId/cDJ4XGmnf6YK3tuDUDUPwAPSUfMGHnut6QZxreuYZxQFjgTTCSnqsF7BXId/Ko+1GpA77ugUfMBbM52EYxnOulUZOwBzaIx/334ullpPB2+rv0HOZ5zHjdDPSTJDFI535IvEoQxjqGPDyM/i0sWPXm/iQN97y2kCLxUP3KJ5oMAs+N4MXS8a3ZJgheMMmDDcsBA9ATykwyc6jTrJDagZFb9UiKzAGT6bT8ZzeYnqpDdDcc/CkUrY9JhfPZlIfXqr3sausDF4JSZ70p2hFnWSXbXd7PGQPtP0gP6aVzkPkQ8LSA1z1P2WQN04Rei5jfP6ZaP80l8FLoYmRrkXG4CWP09NvFHw6wAbBAzAgqjwmZ4bWDLo6ymMTPB9eH/kz0U+vDr3z32k3PlV6Q4KXHwq0CD7wPI9p3faVsUbCgnmawdPUWe4rlyZl69bWXGB5tC4nnqQ0tBJKWwqG2V1xY2IhoxaeMaoeTjLCIibQa9Q3KVK+CqTJcVVn0asbNc8cSBehxS9l/VlhAwA6TzOCFystUD/36bvolSeaLIJ3kgetkoWbETz3kknwpHuZ5ur8E9d1FXHVlMEHjG+8+KHKCWXlKQpFhJrsUJlk55map41l8LSgVQebWxXyB+bOfKn1JsZD9EZcMr9CHoghv0HwAPSUUoK3TMshg6nWmdLla8beCN7Umaq7IHneOO2AbSgjJAP8fMMeo+YIxSPPZJRZCly8V08GT3raLdeGtn9D26i+WevpLD9LOI7tIJfRRZ9FwU4NupihfSTfp6QzyXpOIHgAekofv4u+ZTpVRG2HIIF4sulaPAXpadgAAAi+NJ0qorZDkEA82XQtnoL0NGwAAARfmk4VUdshSCCebLoWT0F6GjYAAIIvTaeKqO0QJBBPNl2LpyA9DRsAAMGXplNF1HYIEognm67FU5Cehg0ASAX/bfdoW+Vm2i4VAAAAIJ9U8G17EwAAAAC1AcEDAAAAAwSCBwAAAAYIBA8AAAAMEAgeAAAAGCAlBH/r1q0lBAQaBScRgNbBbVgKFFcpaHFB8KsFTiIArYPbsBQorlJA8KsLTiIArYPbsBQorlJA8KsLTiIArYPbsBQorlJA8KsLTiIArYPbsBQorlLUKPjpxBn5s1qjA00in8SZP5pMk5/SEzmdOPHb2q844QAsjM1Y0m0omE4cGXqrSrdt8gl5m9yx2nackT+L7+60KuggjRSXvIZlO0qZmHfYNeoSvH69yKUJuodN8JHwuGJ37aaY+SOcYwAWgdyG5lo0qzaVpU6XEPdm8jZ3/nQ2Iyvz21vc5j0TfJ3FJS1krtSU91dG8DN/5GjNm54c/kojTiK9USa+P9JvlvjsTie8mW+ku3UCAN2lXEqqUMBYVpH1XvASlYsru5mg1WzmxTtbXosKXmsnRlGEztt+IN8qWrauMfNH3b2QAegn6W2Yp5rJNEryqZQKxhr5U1Mr3plMeiX4mopLkNFEMAmtHylsvWPwzmRqGq0AnUQ6ifHdknHmppPkc7UtgPYcAFWhxiIj5MkdNov71BPryjdfVgYfj8Nb72xhqJ5m8DUXV85ha+nNygne0lcPugo5iTN/MpmMJlN7d97MH41GySUuX9vwOwCVUepSLeUc+QW1Et+8YgPpnNl4Po2c26a3rdpg74ngoyiqobjoG6bOjlmUt4xxwa5Qj+Bth93VowZRJI+zjPypP5pMo5nv64PwI38WTSeTaVoR0Psmv28fAGDDkCzRbDHtOEt/lSBPtZQYg1cehxGTbDpfcTdWXHpbQM3+6W99Ga9cVPC8AEcj8yMKHb5OADmJvj8r0mynPWHiboDfAVgAyVhqQpqXLhn6nLM2YdtQp3N2mbqLK/1I632Wqja5iLT5iV2lngze9gwiBN9lMh6TM0Ov5uSU4yQDsAjWb24pIA/lKyvMD3CnQ2vqJ6Xk2BGaKS7TA7/S0rR6VEcou6z42gTft+sELCZ4sRLOMQALYKpLSXaYObNJuiMNKSn5thvHvpX+ZvD1FNfMH5lcRecWkQJKNkKl193CQwa/upgEb2mqkdm2vZtmAkCXUYc7/Zk6TS6SBU3vUXrTKV30Gd/rNppM8rrxO3s7111cSt+8eenU72n1J+X/k46WFr6LfoXBSQSgdXAblgLFVQoIfnXBSQSgdXAblgLFVQoIfnXBSQSgdXAblgLFVQoIfnXBSQSgdXAblgLFVQoIfnXBSQSgdXAblgLFVQqz4G8BAAAAoOcYBF+qXQB6SpETDQBolPl8/uj5CK+CL9RapaDFBcGvFrhVAGgdLvgbE8dxHPyb/S8EXxYIfnXBrQJA63DBc3vhlfG6MYHgSwPBry64VQBoHZHBt27Qjr+QwVcAgl9dcKsA0DrI4Au+kMFXIEfw/Ft39Z9TwZv+DI8V+vX9oG1wqwDQOh3J4K9H0b+0rfDsFzL4ChTK4KnaORD8AMCtAkDr0Az+7ftRFEVvB0Rs16LofnQMgkcGX4mFBV8KCL5L4FYBoHVoBv/2/ej6tmx0CD55IYOvAAS/uuBWAaB1lAz++rXo7fvR7RCCV1/I4CtQSxc9/1O504kz8v3kLw6nHpf/gHj6gfqXdWf+SPxhXvlv9EbavqSfyZ/wFevof7aXrzCdOLa/lGwK3rDp6cQZ+dP4/cmU/JFl0yF3uT2TnmgULAAtoWbw16JHg+h2FF2/ZhD8dbKi8DFf63oUL3k9it6+Ft2Ooohv5Fq8fNpoCOJPI7GXPggeGXwF6hV8UlunA/OSqacTUTHTXF5pI8ysib7RQ/TNdD/6xrlS9FZDGpoW/MyfJJtJj4OYjOsmXUs6CC3izpEjeBQsAM2jZ/CPno+OhVHEjUsEfz2SM/tEyXzkXuhZmD5W+3Yq9Xj57aTFQDbSfcEjg69A3Rl8Wv+O/JnWJy9+lbN6kpDxDyzpmTnR1FYxbzxbCabgxX6kVJMuafrZemidIy+DR8EC0DiGDF5oe5sIXuurFwvTtbiqxTQ928+8AcHpi+CRwVegPcGbq+cKgk9/dxzTTg0rG/erBT/zRyIU82FaPNQT8+R20YvfUbAANIQxg380ybnTOXcmwXNhlxN8EN0WPQEkre++4JHBV6BhwUtd9LReV7ru06H3kT+zPnlHPkgH7Ge+r6rJuPHyHiLvkfkBeR6yHFoHkQWPggWgBWwZ/KMiz7Z10SfvlxM8WTEdCOiD4JHBV6BpwcvzonxlFFXtotUtoyBWGk0mQivpHsQqhjlcFXqS062Q3eV6yDw5rYPQE42CBaAVrBl8Iu+Ck+yKCj4Zs4+i6PY2MviBs/A32YHeglsFgNbpyDfZdf+FDL4ChTJ4HQh+AOBWAaB15vgu+mIvZPAV6LLg1WnT9fXKNrflPtHArYKCBaAcyOALvpDBV6DLggfNglsFgNZBBl/whQy+AhD86oJbBYDWERm84zj4N/tfCL4sEPzqglsFgNbhgser4Au1VinMgr9VgDkAAAAAOoxB8G00NQAAAADQCBA8AAAAMEAgeAAAAGCAQPAAAADAAIHgAQAAgAECwQMAAAADBIIHAAAABggEDwAAAAwQCB4AAAAYIBA8AAAAMEAgeAAAAGCA/D8rgYJyVvPw3wAAAABJRU5ErkJggg==" alt="" /> 这里介绍两个简单的概念:
普通索引--Normal:最基本的索引类型,而且它没有唯一性之类的限制。
唯一性索引--Unique:这种索引和前面的“普通索引”基本相同,但有一个区别:索引列的所有值都只能出现一次,即必须唯一。
四、我们来实现第一个功能点-用户登录。
写个存储过程
1、判断用户名和密码是否匹配,如果匹配则返回该行数据,如果不匹配则返回一个错误行
2、不管成功不成功都记录一次日志。
首先,我们先来创建一个登录日志表。字段属性如下:
表名:user_log
id int 自增
log_type varchar(20) 类型,暂时放一些字符串
log_date timestamp 默认值是current_timestamp
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApcAAADoCAIAAAA15Vj7AAAdyElEQVR4nO3dO47jytnGcS7EuRdwgA5qBZN++QkUVTIbMJw4VFpeR2MiA8SkhqOTdGoYnMQTOppJJuUX8PbWjSxJvFSR/x8GOKfZbOkVWayHVaSk6sfRmqY5ugScCi0KJ3aa5n2aF3K46ugC2JdYGS0KJ3aa5n2aF3I4UhxnQ4vCiZ2meZ/mhRyOFMfZ0KJwYqdp3qd5IYc7PsUBAMBzSHEAAErVp/h/MnbsBgIAIFtTirdZIsUBAIgpIMUBHOjYHgrAvAJS/NgNNMqnkg71zKOeVRRaNnAdpHiqfCrpUM886llFoWUD10GKp8qnkg71zKOeVRRaNnAdKSneGKXr4f+UafrFta76xd6Pta6m9UjxTVDPPOpZRaFlA9fxWIpPYe1EeNvW2srtxqhVgjyfTiSfSjrUM496VlFo2cB1LKR4rauRNkZVnj7La61MI9cOrLN+in/c397uH+7S95vz/NM677fA+mnmKnm/Vbf3mao+7m/i9/Flq9QT2ih2gWKVsYr3W+WuMm3A27v9c2gjhuv5uL+Na/fPNfvCvX3XP/3jwvWEXmb44bsXfLvL1x198U/XszZr+73dbm7xXfnDYTD8N3wc7Vg2gKeljMW9cbenMeqVqJ7hdSLBbn62h5XJvU2KRzNyWnB7/zEmo9O5PpnlsXqmDSSKcCqcNoO1Qd5v099MWdv9n3hR4Y0Y3z79w4b2nLt8KPLVU5yUeiI/jvWIkw+5VZ5tQLP1hJpC9LwpfuZhP+i0jrvHnBT39ox4dFIcyFxCivcj7JmUrvXwezfwX75A/sxY3LF5iludoB14Q5VTTzxWMIbjqik+dN7Dfz+coWT/S2d4HLDSWNwrLDoxMY4K3aRf+SxnqiekP614u99vb/d7n+/9hEJSej5aj5wcEFvm/WZt5Y/7m7XaTB3vt+rtbZgA8Ten1QDeb93Lervfb5GHJMWBzC2meGO01krXznVvaw2l1DAWt+5/W+EuN7cTmR+KV+Ho2jbFxWN2/+ukuEytj/vb7X1mxv/VepyHfru/d7V0GTpNac9vRK+e4RW5w9bFevrJh+DMROgJQmdAa6Z46AWE28T77e32bqfo05Pp8Xpmrgm5L3tatng2Mb3KSFMUKX67vb3dPz4+Prqm4z0uKQ5kbiHFG6OUqY3SddsY418YV6Zpa63raQwuY3x5Kv6JFJ/mdafByYc9srTnj7cdizvzrVNKTtF+fxvG4nfx9NuMxbtX2G2A91s4xZ2VI69qPuj9QJs/y4mefY3BZKe4uAix8ljcy0B/ujn6avvNsuJ1+lhgh6N9GmCnzKB0V/XlDNDi1vQfmhQHMrd0d5sxjX2PepjI6ynGVwjx8Iy6N9Z+uzsXFGNZvXqKv9+q23vf94kE6nPLmbju88G5Y2rtFLfCZy7Fg1HtVdO/jlDapNRjbXN3LChL2SvF5+qTC/0ZhFdG4rPbx93w4RQfE3ZxLN5tNHES56d49DTNfWBSHMjcw+80W0zxMcbjc/CvpviPH3ZX9n6zuh9/MDX+bu0Uf7/d3n/8+Pj46O9otgeWXXjat5uNHeluY/FYJ/1xf7vd77fgfV5iE9rpUsnXklKPc8XBvS67/1h8OqOJZ9j4y+4MbelE57V65DOO7xcIp/jiWHxc8/Y+nF9GUzzwEM5NkMtlAzjcBiluZ/n6KT4323vMPerdIwdvah5LHsbq95v7/p9137k0NxZ3SrLvtnOyw727bT7C4/WIZ5AnCfY7naYbALvLtNZ7oNa/h3/pssLH/e126278Gk9ythuLW6WN9ya+cl3cCmu5+4MpLs6BSXGgPOkp3oTeLV71d6/VutJ17O3ir9zhlnznc5TV/W6U4vJd0dEUf7/f7zdvlv1p0bulbu8/prG4HATbU9vWLc9+NHsdfuTdaQv1DFvD20LT6UDgtqr+jOGl2Iyf5Tib3X05wwWR8fb0pHPFJ+uxWoF1V9qz96i7Dxq+mj+tIje/NX6fKxtANor8HPWpT5Ozo5GObfaNsw+Yva7p3lftp3g1vFdpWHmbFO9eYCjFp1G1NerufvP29uak00pj8fdb9+DpL9UeGj5920BKag5P6NzddrfnKMY/3GYsLje0G7ThUwf7F+G5d+sUbbx84Z+pDfc82NdNxE+kOJC5wlK8z5whD62OTw4qZEcne64t7m7zcsbv8If35U7zpRuN7cRF9+6B7ze5lT7GtwYHtt+01fob7VcYi4uJcX9IG37+wAnQeveEi3cxRMRe5B4z6nMSpyfkaoGTIPtGDTEtFN0npDiQucJS/ED5VNKhnnnUs4pCywaugxRPlU8lHeqZRz2rKLRs4DpI8VT5VNKhnnnUs4pCywaugxRPlU8lHeqZRz2rKLRs4DpI8VT5VNKhnnnUs4pCywauo4AUBwAAQX2KHx3WAADgYaQ4AAClIsUBACgVKQ4AQKlIcQAASpWa4t++fduhGiATNPgTKHQnUvaeTlA2KQ4E0OBPoNCdSNl7OkHZpDgQQIM/gUJ3ImXv6QRlk+JAAA3+BArdiZS9pxOUTYoDATT4Eyh0J1L2nk5Q9ispXutKmWbV0oA8WA2+1tXQ1Gs9tnnR/mtdOZRpal3pum0bo3S9e/1ovV6r3yELiwaNUQf1b9FcCfa4jdGmGZtZ/5+Z17VZixzLboxyDwdH//T+YWP9+lnji5/dCl7ZZVklxcM7gFTHOTgNfuzShxTvgr1upvY+dBluH0KKH2Y+xWtdVZWum2kfxlJlnXB5tmyr4lAP2xil68YobYzqfj/f5gIpu8ZLi5YdPR8KpuzrxwspnvA3XSNwN08ztCCgfLFjW4zFvd+Q4pmJpnitg0MOseumX+6//x5KcT+SdW2fjYT+ZNOxuF91JEwZiz/vpRT3BiVt2zK5jrMZG/zC+KyqlKmDM4hak+IHC6V4Y1Q0JmpdKRWdDd6th/PngcbLOZUyTdsY5b6C2mit+hLF0FfE2Ew7Xql5huMwnuGMxV+x4nXxStezuwkoU/ASUnexO9zxjX0tY/FsLF8Xt2U5FreTeJwxn15K90NjlK5rrUxttNZdyXJ+NPbi13t5gYxojKoqpboJ/+DcR/ppRa0rZYy2zqjkdpj+nxRP+JtReGodKN/Q4McJy76ZT3cP2X3ONBvldh2k+GHSJ1Sc8HbWPzDFrfRz7qfsG568FD7e6qbd+dIDUrw/8R2eob8P4dmHF38+zjaQ4m3bPp3isaOCaXWcw2PXxWV34Vx95ag4TmwsHkuu+E0Pu5rKdkaw1oVLOQfqjXRr3V0en17m3jPq05ULubXHKE6+jz344ofXS4q3bftEineNQanQrWyZHATAy7yxeFTovT+MvrMQn1GPXZGN3eSw63BcdLZeNosF3YjU6GBz7Oayd+2Oxda2ht3u4RC8iWo5cElxywpj8fAN6aQ4ziJ6q45S3q1F/W8eyHnsYu66eOgWMT1FoAyMvXfgo+8XV2Ki2bqZzY78/sY47+6NtV6dPPGVW3bmpNaft4ofMrEUl6ctpHjy37TxEQr9Fc7BPbb7OSh52TTaQTAWz0Qwxe3uvgqM5YafjurSHn2/uJWB/f3GwysdL5q7JygyQNd5jbGyY4dDv4ndcmJCKS73k9aMxR/4m5axOM7OnVEPDw6m/mMBB8YRAldq/V0xfPiLUUMADmk4/dpetG/ZVg2R+7ztN/3KQvs7u61b7t3cXOms86EUr7XI76DDP2Mnb3yOOrCABn8Che5Eyt7TCcomxYEAGvwJFLoTKXtPJyibFAcCaPAnUOhOpOw9naBsUhwIoMGfQKE7kbL3dIKySXEggAZ/AoXuRMre0wnK7lP8GwAAKISb4g8lP3B6KQcFMlfoTqTsPZ2gbFIcCCj02IZU6E6k7D2doGxSHAgo9NiGVOhOpOw9naBsUhwIKPTYhlToTqTsPa1S9r/+/ufx3+uPloIUBxYU2iVBKnQnXrzs39Ks8lztGmX/6+9/bv/zf+O/fYL8tRSPfcdP9JP6gfJMB8UBX2qFdVw8Dne2Yoqvsk6iF8t2Iny3ICfFgQWk+Al4Pdv0HRxLC49klz1+W0hWNQZcMMVlhP/vH3/63z/+FA/ylZvZNjPqpDhOJPnYDnxPNTIhdmL3hWZaa+dLt/2Fx3PKFl+Hm3VD2yHFv3///unTp69fv2aY4k6QixTfpJmR4sACUvwE/J0Y7KVy67rseaCxceXe0rZO8S7CP3/+/OvXrzxTvAvy2KT6us3s9Rn1sS3Z3w2b1aEAvCDUk/bf1Swau2j/NP78FJ/i03eA9z9lVadj0xSXER5b5znrpvjMpfE8U9ya4snu4hLwgkiKDy1+munMfYR0ZaWnuNO2cqvTsWKKf/369dOnT9+/f++WOBHeZp/iwbvbskxxp6jMmxjwiOhYvBmXkuK5Kz3FLzsW//Xr1+fPn7sg9yO8zSPFuwiXd7TN36BOigO7IsVP4AwpPlWWe0tbd0Z9DHI/wtsMUnyM8C7FUz71JcsUt2bUG6OYUcd5kOInUHyKy9aVW5We1a+Ld0HuR3h7dIr7EZ7yV3mmuLy5RxmTeyMD0iWneP8+Ehp/hspP8bF5VZm/zay9zPvFn4vwNq8UBy6g0M/PglToTrx42Tmn+NMRvjpSHFhQaE8KqdCdePGys/0c9XwivCXFgUWF9qSQCt2JlL2nJ8bih0d4S4oDiwrtkiAVuhMpe09PXBc/PMJbUhxYVGiXBKnQnUjZezpB2aQ4EFDosQ2p0J1I2Xs6Qdl9in9L8AMAAGTATfHF5GcsjktJOSiQuUJ3ImXv6QRlk+JAQKHHNqRCdyJl7+kEZZPiQEChxzakQnciZe/pBGWT4kBAocc2pEJ3ImXv6QRlk+JAQKHHNqRCd+LFy872s9uy8mKK2995C5zRBsd2bl+6cX4n6KALsmKKr7JOohNsbVIcCCDFT8DaifILGBt/aUa7xm57OVYYRIrvKZMU54uZkS9S/ATETqz1uO1rPXzLZ2PUsEumhccTZWdaYRApvidSHFhAip9AZCcOO8LqgTLqjqayc60wiBTf04opPs1S2eeJYhbIBPsu8YdKayVW6Q+xrslOq4lHD0+NASsaDgoxGJI/NEa5LVO0WDF6Eg211t3h4DTopIfCM8I92ziotccj+ZxkTWXnWmEQKb6ntVK81pWdvmK57I8iTU+cWormOTx617cND2M9uNWp5nxyinJZPWnf4sb21hgdnp6t7BNcu+HXuvKnclMeCk8K9GyNUXIrZ5mRY9nZVhhEiu9ppRR329TQ5Jzl0aYnm+i40niK4DRg8eC2nJs1ymVdUg1MwPpDaPvXgWbvnIBOv154KDzL6dncIUWuI13G4qusk4gUd1J8mjh8MMX7PxaL4imec0PGWciDomt0U/DKNJja6VMpnvJQeJazE91tau2jjLZ5aB6ozarCIFJ8T5vNqAdupkybUe9+Ulor2c05j+JP17e1zrlVo2DWQeE0TtG3zk7QTlNNxj29DZzyxh8KT4rcJjYKX9Q7nHOPeoYVBpHie9r+7rZpijB2d5tYS/SN7omnDt3cFrgbCFiZfVBY55RW+9Y6OoCe1gre0uHeJjf3UHiKNai1iSm/7PoS9wwyvwqDSPE97fsJrMmnkPaKdGQ4UqHHNqRCd+LFyybFU2yd4o1RM3fqxv/ISm1SHEcq9NiGVOhOvHjZfI56iu3H4mLSW86XB2a0xO/szCbFcaRCj21Ihe5Eyt7TCcrmO82AgEKPbUiF7kTK3tMJyibFgYBCj21Ihe5Eyt7TCcomxYGAQo9tSIXuRMre0wnK7lP8W4IfAAAgA26KLyY/Y3FcSspBgcwVuhMpe08nKJsUBwIKPbYhFboTKXtPJyibFAcCCj22IRW6Eyl7TycomxQHAgo9tiEVuhMpe08nKJsUBwIKPbYhFboTL142n92WYi7Fq6oK/k3k21DWk/039uBSwsd2YxTNtBwn6KALsmKKr7JOohNs7UCKB4OcFMelkOInYO/E8UOgc9+Dpyj7eaR4iuUU94P86BTnY9WxK3FQbNr2aNgbcnZi38HIb37PUvllv4QUT5GU4k6Qk+K4FFL8BKadaG3m3Ld58WW/hhRPkZriMsgjKS6/qcz/lrKqqpQxM/Fsf9HZuJr4SjRd26uJ89IypplQpuGgsNve1JHWulKm7huqrqcVRYMMtFK7aXsN2235KU/U1TQ9VM4d/c6mns0eemR++a74sl9Diqd4IMXHIA+luP3d4dOEj5z6aYyKJa01QyQeqzF6WH9aRZ6Hysac+/kpChUei1spPrRY+cW6Tsw7rTTQWuWiYMtffKIu+cXBwQExGHeis+FLicNCy34RKZ5ipbG426aGJucsjzW92dW8MYloz+43lWfdslGohBRXInK9/w+30m6pbLBusHstf+mJ3EfgvHZS/KC20LJfQ4qnWOm6eCDFh57qlRSXo3d7wDGleM5tGaewQopHW2mX1F4Gh1s+Kf48Kw6n3ZH7Jiq+7NeQ4inWukfdm1EP3EyZOKMuVhMNtzEqMqMup+Jzbtgo1aspHmyljTG185jh01PR8pNS3D6QOCJ64Z2Y/TCg/LJfQoqnWPH94pG726Zpwdm72+TdP9Nq4o+1tgcqMzcBAWuSB8XU9h5I8XAr9W9CEw072PLTxuKam9sCrA562rq5b6IzlP0CUjzFi5/d9qDsTyEBXznHdu4TrQcqZydaLl42KZ5i689Rb4wK3XsOlKOcY5sUjypnJ1ouXjafo55i6xS35hKHCHfv2aXfQc7KObZJ8ahydqKFsvd0grL5TjMgoNBjG1KhO5Gy93SCsklxIKDQYxtSoTuRsvd0grJJcSCg0GMbUqE7kbL3dIKy+xT/luAHAADIgJviR5xMAACAl5DiAACUihQHAKBUpDgAAKUixQEAKBUpDgBAqUhxAABKRYoDAFAqUhwAgFKR4gAAlIoUBwCgVKQ4AAClIsUBACgVKQ4AQKlIcQAASkWKAwBQKlIcAIBSkeIAAJSKFAcAoFSkOAAApSLFAQAoVZ/iAACgOKQ4AAClIsUBACgV18UBACgVKQ4AQKlIcQAASkWKAwBQKlIcAIBSkeIAAJSKFAcAoFSkOAAApSLFsaHqL//mH//4d+C/o/sAbI4Ux4boRIADcQBeASmODdGJAAfiALwCUhwbohPJU1VVVVUdXQU2xwF4BaQ4NkQnkidS/CI4AK+AFMeG6ETyRIpfBAfgFZDi2BCdSJ5I8YvgALyCpRRvjKokZZpuqTZGdT+0bVvr8X/HP9P1lnWjCF4nUuuxKfUNpNaV3XiasWHZjW9aK215/wTdQvsphucU1ThVBSu21hF1h55i/NPga5meZnr4btFsSY1RToUPP3X316T4RZDiV5CQ4roeYnrsX7uljZXjVu9CiqNtnU6k1lYk9ad+CyluxV3/Q9Jy8XCV1vaTuM/ptN4gdx0nxZVS/plsZUdp8AxhWOgcMqGSGqOUUu6BlvLUVqWmIcWvghS/grSxuNZaaT2d9YdC2lqW0i3i/EQnIhNLSk1x0abSlk8PV+l6iK/wc66Q4toYL1+VMXouxeVp8NLTjavbv0h8avelk+IXQYpfwcNj8S7MZ2Yg27YlxdGZOhEvrNvYL8IpLmM4Zbl8uErX9mz0File24/a/VDPpnj0zCZY0rBdrKdJfGpS/IT++OOPxYWk+BU8d11cdjHDGrEublorOu7AWb2e4nbDG9dYXB6YZp9yfJsUF6EslgSvi7uXxf1n90qaHkpWn/jUzKifzc+fP3///fcvX77IhV++fPn9999//vw5LiHFryDxHnXn9jVvDOH0OfLemg4pfklrjcXtBre83H44a+DuDV3b1VJ8bOXj7xbG4qLEwHlw9Lz4iad2TnpI8RNwgtyP8JYUv4alFHdvmR3n9JSOd4O1rnTt3beO67GviwcbhBdv4eRzbgRbXB55/C7H9UYp3i81gWHzXIp7L8R/Ov/WdXvkvfDU7pYnxc9hDPJghLek+DU8MxavdXe7kNfn9N1F3wER45CdSGOUNUEztA/77VO1rkLpaM3mJC2XT+ve1e3OFK2X4n3cip/m726zbtJzbqO3jy8v1McheMJTk+Kn1QV5MMJbUvwaFlLcvSxeTTfEuvfMDD1IuPdgRv2S3E5EDimdkApc6HaSb4z7ueXuvFEgPt3TiVVT3HsbXPj94oGl3mVwK+H9X/ubIv7UpPiZ/fz5MxjhLSl+DYtj8VorrXX3BhdjX78LDDSc7mbKblL8kuhE8kSKXwQH4BUspHg3Ipjmxv2rdfGh08xCXASdSJ5I8YvgALwCPkcdGyqwE3HvIzvlKSgpfhEFHoB4GCmODdGJ5IkUvwgOwCsgxbEhOhHgQByAV0CKY0N0IsCBOACvgBTHhuhEgANxAF4BKY4N0YkAB+IAvAJSHBuq/vJv/vGPfwf+O7oPwOZIcQAASkWKY0N/BXCoo/sAbI4Ux4boRIADOQfgl2cdVT9SkOLYECkOHMhP8f8+jhTPHCmODZHiwIFI8SsgxbEhUhw4ECl+BaQ4NkSKAwcixa+AFMeGSHHgQKT4FSyleK3t72aMf114Y1RVVdoYZX+zo/wGclwMKQ4ciBS/gpSxeK2tJHZ+HL+QeVjYGDX+Xv4/rocUBw5Eil9B8oz6kNWBgXatK2WMVsb0+d4YVSnTxMftuAhSHDgQKX4FCynujru7ZaHhda2VrsfF3fQ6k+lXR4oDByLFr2B5LO6NqN0UD43S+zX6MNf1MDzf5DUgW6Q4cCBS/AqeuEc9OBb3Bu3OFXFS/JJIceBApPgVJKR4rYfBtK8fpI+/1HVgPa6NXxYpDhxoIcX/+bffqt/+9s/Q/5Di5VhO8S7ErQXuoLoxSmutTNMYzd3pmJDiwIFI8StYTHEvxL0U7/K6Xxocsvf3q5Pql0OKAwdiRv0KllK8McqdEPfubjOmiWW7/JEUvx5SHDgQKX4FCyk+hHjk3eLizWQLKY5LIsWBA5HiV8DnqGNDpDhwIFL8CkhxbIgUBw7kp/hzjqofKUhxbIgUBw7EAXgFpDg2RCcCHIgD8ApIcWyITgQ4EAfgFZDi2BCdCHAgDsArIMWxob8CONTRfQA2R4oDAFAqUhwAgFKR4gAAlIoUBwCgVKQ4AAClIsUBACjVQor/lmbPik+gMcr90nYAAB63nOKLD+GtM35Jqfd9puN3lc5+42kXcFbUie89rXVlR6D/TeYpX4lqrTb+0BgVrGdarpSaqqy1MmasJ/71rfJ1DS/Cj3HvlQEAMGvrFJepJKJ4SnE3ca2/GXOtW68xKphztRZfc26vIJN1Lvuj4d8/YGNM3ZWt666gIcWb8SfvL/0H9M4SdD1VSIIDAB7zfIp///7906dPX79+levI0OyGqf5YXKyjdXwsbgkl4tLQt6qUaawzitCzKdMMpxROxA4B3aV4Y7QytVHaGFXpekrx/kWGHsF/tOn8ZTxvCA7LAQBI8GSKdxH++fPnX79+uetMI+NnxuLiUWYk515sXkCOvUWKy2kAK8XHgnTdGFVprYdzguhsvv1y3en78clIcQDAs55JcRnh/jq16a4c6/qhFE+8nC3/2E36ftK9H/CPISyjP/h8CSk+zqurcUKhG4sPE/5pY/HA790JAmWStgEAACkp/vXr10+fPn3//r1b4kR466Z4rbXW/VjTm8GWKV4F59y94W1AeBg7Xjp3UtwZiw8LwinuVzE9xzgDPj1n95fTQ8lTkdj/i2LbUGEAAKRaTvFfv359/vy5C3I/wls7xRujnWvRtRWX2jRDVvZj2+hYfGZcG7kpPCnFh8x+dkbdrqG/MD782eJ18fDdbaQ4AOApSTPqY5D7Ed7aKV4b03jJWetKaa2qqlK6toKz1pU2brAthtlLY3HxIA+k+DSVbqete9e8uFtePpo1Wu9n9rW2zyZIcQDAo1Kvi3dB7kd4m/ROs9BAe5iKrmV2JoXZC9fFrQd5YEa9Nt1piD2M7v6gz+Lh0WtdVcrUwQ92cSK7G8mPG4sUBwA8Zp9PfenuDxOx1hil627g6k0yu29HC4mOxd2fnh6Luw/kj5nH8q275lp5NhC9+TxwdZ4UBwA8assU9z5otEvyLqDHUWjz0lhcfgKcPaCOJKj4FDb3hnnnRdhnDP4lb3ESUFkf3yLfbOade8jbAqxTC1IcAPAoPkcdAIBS8Z1mAACUihQHAKBUpDgAAKUixQEAKBUpDgBAqUhxAABK9f/0VXX+2pmqQwAAAABJRU5ErkJggg==" alt="" />
然后我们来写这个存储过程 sp_user_login:
BEGIN
set @gid=0;
set @user_name='';
set @_result='login sucess';
SELECT id,user_name INTO @gid,@user_name FROM user_sys WHERE user_name=_user_name AND user_pwd=_user_pwd LIMIT 1; IF @gid=0 THEN #登录不成功
SET @_result='login error';
END IF; #不管是否匹配成功,我们都会返回一行数据。并且该行的 第一个字段 表示了 执行结果集的状态。 SELECT * FROM (SELECT @_result as _result) a,(SELECT @gid,@user_name) b; END
然后,我们来call一下 sp_user_login(‘随便的用户名’,‘随便的密码’);
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAWAAAACsCAIAAADKXuFgAAARrElEQVR4nO2dvYrkRheGdUkLa8SObmTBgREs1D1sNIEDLWwwSo0xbGhQYicKzCSDo00622DpZWAiBx8MTr2JvkCl+j1H/+qq6nkfhN2tLlUdnarz1qlSb0/2r8HXl0p31Xz9+vVfAFaRmW9e5kiCQADAAYGAQADAAoGAQADAAoGYLRCtKOqze/JcC32yFZlouYutj1qREZUNLZzrIrPpr7XOi9Z+T9QHgQBbiVwgmjKvTge3wQpEK7JR+pBUoe+HtYrsIfTpGgflUAp0rgsz3M91oVqQZftXRjlSvSAQYCsLBYIM2FNV6pNNmZXNWAVZ5lZxqvKy6T/qyaumyp0oGi7SpSiGpk/e9U419l0zkWXP7bUo6loQKUIrivrsBLUV2SrNIFKM/pSlHIUQyCBAHEwJxHg8DgGnVIEMTC0YTdkHvwxTeZkUiJ6T+rQvMTRAZhJ2YfsDSqbIasYFog9d0Q6TtH7vh7mLFIhW9P/NhBjJIMZyAIpBkejVCgQC7MKCDKIp86oq86oqidhryrw6UfFqhKoKz6GcLxBNmeXViZMlqnJWIMYEzYITiKkVRpaJup/CiZ2DIXZ1diDVhdmkONeFaGXMkw0XdUstYZwypFBAIMBqZglEH6/9MkDHrysT9OJiiH7701OVZ2XjCoRfQ/AMgtmZLHScq7WFcVZvOcglRjFkCVlReGHeL1DM97UlJFZzSruK+twKP5eBQIA9mRCIqRVGlpVVP1n3kWfN3EaW0JR5WVqTep7nZWkLhGpsbA/C4tAMQoUiBS0QVtAPOqHOF0IUhRCFaPtVh7d3oV57rco1it+6VRQZBNibORkEszNJbRz4Cwpze0JdoLclvT0Iu7mJpxjRZxD2xa1QqxITVUgtRpgMwt2knKMOEAiwhXkCQc+itEA4s7W58aAukMpgC4T5P6JJSgniySDa2t4jcARiqKao25rIIOSlRTGWQfiPOa0GIBDgAC6QQZgCoQLX3JcYLjpVeV411twfPIOYpp/W+4eO9oaA3IIYdgr6xw1nSiCIJYbatDAUBxkEuDR7ZhBNZe8d8BmEHdr6k6bsq6Vb9EOeeWxCm+sYZt41GVcznmK0HTV36wvtL08W9dlensiC6r1MRoTTAvtFKWQQ4Gj2+SZlH5Rl48/c+sHEiU0NHIEwA3htBqF0QqsTozEJ/FsM/ynGMiAQYDXbn2L0awU3TvWF5saDM4uryX7YziQ2Muy25tjTX04LR1P6H0UvEFuBQIDVRP5vMS4BBAIADggEBAIAFggEBAIAFggEBAIAFggEBAIAFikQ238YOmlCh/CxhPYuSBgpEKHHMAAgRiAQAAAWCAQAgAUCAQBggUAAAFikQHw/gK7r5vz39S84cODYeqQnEHPUAQKBA8cuR3oCMakO35FB4MCx05GeQMxRBwgEDhy7HJEKxJc/Pnz48OG3v/9ZoQ7f12YQP56k9U+nWeev9dj3fm8f19Tz6bn71FhnHrquez683e31LLWTLP/pme6C20e6X1SX+VUR9Tfd02wLYxSIf/7+7cMfX75/+YMUiDnqsE4glK/JAcGdv9Yj5P3ed92je/LT87LAC3UstdMvb0rSQ9c93Ose6R671/eUajzrMs6npD23j7ra8SNGgZAwAjGpDt+NDKJX3K7rumdjUrrXhpJivF0g1AzQPUu17s98OummnRnSb64bBoc/b/j1v/6le910T50+7xR+Oul55nbGLZD3q9u1K3lQN3XSppKZiLyvR7oe1Yo/fD8926ox3OzDve7Q3qVsBkT2+4p6GD/Tds4ZKnz5H0+eKzyBGO81un4+iXiwB+dBHCgQc9Sh64a4etSO07d9rwelPxa3C4RZ0lT3PrpujUE2HqjW4DCGxUj9ql9/PNlj994YzfezZg9yqOkz91a7ssKme6IWaOSS7Zb36gPlGSLVb7qnvk+b7qmb0Y9cvy+sZ8zPy5ck4+Uf/DBmBOKBESyu/gdmikpeICbV4fuQQRDONQaEYneBeG3MqF3HihExOXgtkgJB12/flNP0+LTDtW5d0nRP9kR0+zgE1TN/FXOGuy91I3NyHPOu/bFO9NdIv8+vZ9zPOx6UWk125Xx5ItM0/ziIKDIITiBM7fSjdOc9iHt6hieb9lscCySvflYQp0YV1/oKgfAbOlYghkWB70m/3bF+X1TP8VshVsK7sCtnmne1AjGpDt+HDMJRU7nf07iL9t0FwhICY7/N2S769Dy9xJAt2qk7V//Y7LFdIDyBe6CEz1qGMPVMCh+5xCAt7IaSD5NLG77fl9Wz7vlIL0Dz9ibMZeOcrjRD3VxWjx/0EsNciv7SvY5TIPpnnJrf/l6qEV2nfadwBoQ8+ag/MvP2HjVoyPPcYTbaOUsMY3NuepAZ2ay5+cfVz33k2D85b7D3y6XoxvknQyDIepTzzU3BkRHPHSP1cPaT/b6invEuYGN+alvad6bj59tH+wMjjB+okxOtUCX7JszbOQh8k5I4PnnP9q/v2OfhKPWYM+nDT6zCHtxjTj+tSE8g5qhDhAJhPpgMbkz8d3dVYrpoV+Uy9iT9RamN6vA91gwCB47kjvQEYo46JCMQ1DOznmMnnFDt4kjtOIjwGQQAIFrCZxAAgGhBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgQQYBAGBBBgEAYEEGAQBgkQIBAAA+EAgAAAsEAgDAIgUi9ErH5WvEhPYNAJcjXoEIbQJNtIYBcASWQISemy3C+oUjtFciJXS3gKNwBeLyixySaMdcVC4KbYIk2s4C24FALCMqF4U2QRJtZ4HtQCCWEZWLQpsgibazwHZSFIhWZKI13p/rwnrfdee6yBiK+rzFX1G5KLQJEgjEFbO3QDRlXp22VjI65s514QQ5KRCqDPe667qua8VCyYgqLEObIIFAXDHzBKIps7LRr30NaEpuxlbX7TTmVPrAZAlFfZ6VQfRFhBCbBaJ3zqnKhzsuDWfk1Uk7T5fJrBJrPDQqEKcq13633hBs1nQIxBUzSyCaMi9LYmzr8W0qiHXhzgIxJAtWKrAhg+jaHQUir07GHRtxN2iqLOO49iICcapypisIo5ZbMt+BIC1mCMScEXSpDEIYeQCZJoxmF2YGIdkoEPq+81xlEE1Tlo0d+n3EHi8QUgfIDEJpBN9Z67oMAnHFTArEqcrV9MePpUtlEF3Xneu65T6jy7tZg8n2DELH5JBBVFXuCoQqengG0ZRZXjWzlxinKs/LstyUQkAgrpgJgehVYXoMXyqDMDID0RJ5gmhH0wejlGSzQEjdLCtTIMrqRIXlRfYg+pDPy4pqzG5N5RTblhkQiCtmQiCasmzkJBdLBqFx9x7ovQghikIIwajAVoE4VWWeZ2VjKKS1SWntSPRx6OxZHL4HQe4qn6o861MN+aE8scYWCMQVM2MPYs4YvtxTDJ0hiHpEIPpCcquiqM/yoYW3ONkoEKeqrCoz4I1PzAzC9GH/evPeIC8QTWn63Yv8prQyCdOQuQmjZ8l8B4K0WCAQlAisC//1Y05kxjYjs8RorULWHkQrVKlOndm0SVnZGYESgqbMsrLRTzisCb1sdnh4MHMPoimzshnZhlid5FmWLBx1IBkWCYQzotXY6l+omdGYhNaGwU5LDHl247cnTcYfc1Zlr5pNae5Umo5TDjFfrIpQsrO0+qieoZ5DD6qhPtOytqK7IBBXzA4CMYw993M5AFdpRLRjjhUIlddbTxqbMq+q0pjNfencVSAk6qlqZmUuakeSymF0dy1NKaLtLLCdHZcY/i7m+tw12jHHCoT3pneXufVgO0S7c/U2DfvZ8GjFqdgxwe3QDdulobsFHMUuS4z9iXbMRfUvIEKbIIm2s8B2UvzXnCGJykWhTZBE21lgOxCIZUTlotAmSKLtLLAdCMQyonJRaBMk0XYW2A4EYhlRuSi0CZJoOwtsJ1N9HBuhPUMT2isAXJRI/y4GACAGIBAAABYIBACABQIBAGCBQAAAWOYKxLdv377+7z8cW45v375doEePIF3Lg5O66yAQEIhp0rU8OKm7DgIBgZgmXcuDk7rrIBAQiGnStTw4qbsOAgGBmCZdy4OTuuuiEog/32bvfg0dxrELxPnuJru5839DrxXk6V1IfZQHJHXXQSCCCsT57sb4SadZAR6JQKyw/EUCgThCIL68/yF7+3v4kD5UIM53N84P8beC/Gn+eVxQIHa2/KqBQEAgVgmEiufhp/iFyETbne9uVgbaxQRid8uvGghEH8x/vs2y7IePf8k4l7z6+Utf7K+f3wzn3v36v/++fv74Sq0m9OteIPTlQ4VXcphjpRX9nwlUUWWGnYqzdvhjxTd3d8PnViCqAscm+sssNy00XhuLEsL+wfb+glbQt9OK3hXO7RJVtyK7uWvlefXnUuxa/db3BwLx5f0PQ9jLIH/z/rOpHbYcuKLgC8R/LyCD0FFmBIb8y+TDi1ZkVpx5AmEW6FpxGYGYYTkpEESCYeY8Vjl+tWIsZfRezPlO3Bl/GUk7x8p09FWOrtHG7QUEwg7m39/ZP6XeJxF9UqCEAwKhw8yY8dTAFW3nLRlaL4PgChzAMsvpDKIPU3L+Nqfx8Vh1onokhzBLUq/p1vcHAuEJBLsu6HONN+8/QyDk4DbmTXFzM4S9P8K7eARihuXMEkO9z1SIEgYvFwgju2ISBEYgLvLoBQLhBPOfbzP99tef5I7D+9/twp8/vhoSir9+fpO9OIFQI1nOfDd3Z/1KFlm0xDCjZH+WWW48iNXPO853d65mOEskX118KIEwzhmPV6YEgm59fyAQXjB//vhqSNsMpRhO/fRnf0ZtW7766Z2XQQyfXu8mZTdn10DnzcwmpbnLdneZDGKW5crwGyGUtdpY/TfY/c3FFUsMw026uUmBoHdNdwcCgWOlQHSdtxIeibpLpcQkmyx/2UAgcGwQiDGMfcBjn1FMk/ooD0jqrlsqEMaXFOxFBI69BcLKgcPO0IFGufukIcXvYb00gcBxQYGIhnQtD07qroNAQCCmSdfy4KTuOggEBGKadC0PTuqukwLxDQBwDKFjfBPD3+a83tkvHtL98wLpWh6c1F0Hgbgc6Y6VdC0PTuqug0BcjnTHSrqWByd110EgLke6YyVdy4OTuusgEJcj3bGSruXBSd11rkBkWTYlEOZPHi3hXBdZUb/gr+ynO1bStTw4qbuOEAhSIyAQ24l+rKivNrvdFL3l8ZK662iB8DViB4F48cQ9Vgz9tn4qoetitzxqUncdKxCORkAgthP1WDnXhfE7DeabLnLL4yZ1140JhKkRjECY/97OHFFGsloLOTHpUdeK/jyZzno1DwX661shTzlvOWP8YsGIeqzYst8Ky1tRWx43qbtuQiCURlAC0Qoz6OwfFFY/EFQXGSUQ6leGyY0Jc3yqy8514Ua+86vOlDFOsZDEPFacnAECsRepu25DBuEMIjXGnPMtk0Ho+PcEwvvF4aI+e2PYfssZ42XLAYl6rCCDOIbUXbdhD4KIyaI+7yQQxHJgqUC4rQYn6rFiORB7ELuRuuu2PMXwsnpiE5xbYowKBPN7x2MCwRoDgZiJ4ShPoOO2PGpSd93G70Ewm5T9wn98k3JMIMwaLK3hBYIzBgIxG+1z12GxWx4xqbtuxTcpF0KvF14i6Y6VdC0PTuquO+LfYpzrgnm48LJJd6yka3lwUnfdMf9Yy1ggQB0U6Y6VdC0PTuquw7/mvBzpjpV0LQ9O6q6DQFyOdMdKupYHJ3XXQSAuR7pjJV3Lg5O66xb8qvW/AIDlhI7xTcz9uxgAgBcIBAIAwAKBAACwQCAAACwQCAAACwQCAMACgQAAsEAgAAAsEAgAAAsEAgDAAoEAALD8H3ZEI7WkauuuAAAAAElFTkSuQmCC" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAP4AAABsCAIAAADFWphOAAAJlElEQVR4nO2dTZqzKhCFXZWDrIaRW3HqPpy7jMzvk018O/AOUKiCKkBNIh3OO+r2Bws4FAWC6f4B0CTd3QYAcA/dfxWzAvAxumoVVq1h4DeoWvqgfu6WyXmqlv7d0eBGPZZY6rGnWvGUAOnnqccSSz32VCueEt4n/WV4TK/3JLWuK6SvU489Py39ZeiGxf8dq3sZOgV33zmqquC7TWDUY88vS38ZHsPwkKVtmwFtG+xGSP9T1GPP70r/NT2yQcxXvf5sOjOT/59jz/7/9+859po9/fg8XcHyCWuOf6Qxhj3OmyuaddaglPRZicTFE9p/ukycJZfq+FYS0n9ND+vZX5Pg93dhf9HrP8c+qCpR+u4a7e+t2ou1l5d+Pz5JsySKmo19SGz6Bd0dk/5z7Du5AQhGHbfkUh3fiip9q/f8yPV7Xt9pS/Hsu8ZyXt9eYoy5JP3ZOfi+d15/no2ZuaitFj8v/U3hotd36vdGyyT7CNmSS3V8K6r0l2FYtkmbKrw+qUYvmQte3znkogoWj3u17V5/HPtQ+trj3+/1Z9P141wc8DzHvjfGXHL7vyn9dS2br/yW19/9VT8+Zdee7BGo16dKuSL97VFmpNI341MS3FdifSvm3oxiGbCnuX7gWtDz+9KX5H1R2HmkWH881CGnq/Wq9J+j6fvOzCSIYMNcFvlbU4KxwcdjfTGLz7HvbPewndwOnLGlBekH3t+FM/YPe56PDkpmh5IEFUw8mR26CU4/4fK5HFVdaBUcH3yOZhyplKm22GP8Sfv35dGlLv3Z0DxGmp4N8/5BQHiiH2pX+nsLCM9vsr+m/mLfJvzvOv9ENHtR+vPIvbiT+Gy6zsx+9oc54a2BfkT6Yaw/G+sktHA/nCk+Z8nZ6r2ftwQ88Tj4DeGQUMG7V9+Gk+wE93Wdd6/bhE5UydeHuXRyczS2U5kNHetSl+8UT/84pT1txmlrVzZNlz2u8L09uHO+wZ5ojy1IXwt4PogwzA265yiUSXToW0T+voBnS8L6dx9vOU8/m34cDfHAdHL1A9LfcHOpHett3JhW6ne2f/UXAClLPqyCD/I3V27mAx5SpZfJSD/6xzYzGuLzXscPjM8FHJmSkRIOTAjn9y8MuO+WyXn+pvS/Sz2WWOqxp1rxlADp56nHEks99lQrnhIg/Tz1WGKpx55qxVMCpJ+nHkss9dhTrXhKgPTz1GOJpR57qhVPCVVLH4DP0d2tcADuAdIHjQLpg0aB9EGjQPqgUSB90CiQPmgUSB80Ss3SD7ZB1s9ZO90Xj65wNJG3PPQvo0p/25m1VaXfp8Xqlm3PouX4mh7syu3+Y0UN6fNLtj2hypVvln78IHLEyyG+JjjkLg0/3arn5EukpE8+teP+fk0PepgY/5oe7LJIBYfz2oz0s/hdzl8rivhBpDpcPXppWC84DEOgCeI7/Z/uljvFXyB92ULaHuJjkP6H0q1B+sFBVqlqJfsTd+RG4qjXJ6fl9mCPZqUfdZkkdooKRi6h6A77UCU2Y7cJnZPwfKFfJ4+Qsy/cyw1xxx/TFJfWMtjj4UPDh9EudqueMF9R0SSu1yOYDJE0NOnLx13O7hh4lEg/DPy3I3JW7EVp6ccR4Wsa4j40KX3hCVufm2iw4Y0pe2kO2XX69yaowUEz98eZPAXpU7WmvuMehsw+EbEwE9eLOS2AhbhCqblr9CLbs1av9Nd1dbmIi4tdUuD1Fc8Quaq017fNMTG2VmpR9vpRatEHWNznR3Vl+O8SxfUvjFHzKtyfqcYQUYdEHyl3YtH1ck4zkIYb2qR5/aRgbuCA9PfDvsBOxvpx8dCCZDrIxvr0k29XpB+llunWRBLSl9IslL6afUXKcmHq1x+fatE61GRi4pk7g/2yYS4LfWhwfm6GhxbdMvGJLpJMJuCZpKiFxxNawEOzsN0apcbqdxn0Ji2UWRTwCBnXAh5R+qp/9bmRpByE+PL1ck51kmXAbCXKkSOaI+HV2yny+nT6nlkafHaNZTo6HoaU0TDMXjsMhV4/Gs++pkc3DJlRLn0YeVacmhg0FEqfpccsIRlVh7mh9OXZlrD90lg/Kszk9XJ4RAzmx6IAKRjFhzFoojpcxu5oA0cDnhRL+r3V8Y71ILf6kBOUF8iNIfEHQxKSqzsCn8K3uVfJtIr3UL/0aeyoDPz0O2/JG4t23wpt+LeE/DWv4TmKKI+we35fEZ9KmUQATS+gqYBfkj4AB4D0QaNA+qBRIH3QKEek78Z14fRxPHDTh+zqUrRgOlh7HT4s8cRy5fM6oEo06ce6jgQW6tMt45bWQw5LKsVgCk2ZUTs7BUYWS2JOBezoXv9FtxlIM7Cy1+dvrG0ir+kxLJEn3x/AnPieRNSVnH0hRuxJLD0B7ZEKeKI36dztSl5/IstVNhUz6S/kPf7ipM8XprNf7nLJ7IshDuqfzfXX/84LfA9F+nE4HUcqiVifrs0Ipe+kLEt/GFiwQ7W+twzFIHGFFG+tH19LAf4OqvQTEglC8eDa0M8WSD9oPXwVmLwe3SXPl8yFVgc3QfrAkQh4VPe6rqs8DuZXbFcd9PrBWsXt5Ituk2HJZ6QMrw8U0pObaeEkQ3/775lY391vhxe2H7CRzinp834BsT6wZOf17bSIuPFD39nGd49Yf029/n5RQvprdCQn/exuCPh8QMhJP7nS0Pn0xzSxb7ME8j44uUkINn+ckH68LQaAddWk79UY7kB0Af00Pfx3M7YJn8cwKLsC18iB+8QFr09ag09N3AMFNw5OgjU8oFEgfdAokD5oFEgfNAqkDxoF0geNclT64Uy6/4ZSckEDALVRsHIz/N6a+DlJIYGk9NMT8+JZ6aD4AgKAAnIrN5eBfsuPvXXd38aKXx9MSj+9fUQ8Kx4Uf94DgCJKpK94fSJ9+so1L/309hHxbH7HCRbogGOUBTziCrMS6Z/YPiKeza49Jl4/84lTANZ1Lff6+wFZ+mrAc3z7iHg2s+OErivFwmRQRnHAswn9HQHPW73+K/x5jyX6tRUABO6I9dPbR8Szyi364PZFfm0FAIELk5tnAx55+4i/Utxcot0SCV/4fRQABN7t9YMEyreP0CvFzSXxQeXnPYTfRwEgovRtrhdetMGQAd2BPwLW8IBGgfRBo0D6oFFk6dto/cumAPBNIH3QKJA+aBRIHzQKpA8aBdIHjQLpg0aB9EGjQPqgUSB90CiQPmgUSB80CqQPGgXSB40C6YNGgfRBo0D6oFGgb9AokD5oFEgfNAqkDxoF0geNAumDRoH0QaNA+qBR/gedmDQpiV86HgAAAABJRU5ErkJggg==" alt="" />
然后小卒用插入正确的数据来测试
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAY4AAACqCAIAAAA1LD+/AAATO0lEQVR4nO2dPYvlNhuG/ZMCEw4Z/5GFFMEQ0H9INUUKL6QYtyEEpgy4yTYuwjRDqjSn22LxMjDVWwSGbbON3kK2Ph/52JZ9JHnuC5Oc40/5sXT5keydU3DOOedfEqDv+9hFAMcB1elgFOmoCgAAfEBVAIAMgKoUn94AsWMMwEqgKsWnT5/4oYGqQL7Qqop9749GXJXszSeoCmSLV1VRShMXqAqAZIGqFFAVAMkCVSmgKgCSBapSzFVVx8qmt2f2DVMzO1awzrexsahjBbGz8Qh9UxYmYltjPuvM78T+oCqQPbmoqq1O9XnnY3hV1bFiEiEHKSFXMNIxo4ToPY4Oky7sm1IXT9+U8gjDuuKTth7pUagKZM9aVZHqONeVmtlWRdVO7aAo7F2c61PVikWCU93WJ6s9jxuptSjGQ5+d7a3dmGftaeO6tcqmYWXTMCJt6ljZ9JZeDMfI1ItIu8Qsw2ElY8iqAPjy5csCVU2bYWz60k+kIpS62kpoaBDGsNmgKsFZLhVrjAcgsytzZXMBJUxyN9OqEhJh3Zi4qO+ucGwGVXVM/LdgbCKrmsqLKEY30n1JqAocgzVZVVud6ro61XVFWKCtTvWZMocmDSmKcT1XVW1VnOqzT5DUzr2qmlKrfdYTkpqCNSKtIUaYRouojGnwnGcwq29K1g32IQ9cNh3VwbTWIZUFVYF8WaYqYQ7RSVMmsYVFd/1GD5lLz/WpqFpbVe4eomdVnrH0UhlH9vy0uWpoaugAlmPmVJSlIxzRfdS/N4bSjMNJi5ZN3zE3v4OqwKGYq6pL/b+iqGqRwAgHGNmMljm11amqjETndDpVlakqebCpsSqDXbMqKQUKWlWGfkZjyfklY2XJWMk60Sd0xrjkZ+eoQw/SPbqxKrIqcDgWZVWesXRqgMnt7unDWHIDNZDujFWZh7vwBDD5rMrcuGOyz6gjV5JdRU9WZQ+rz/EUVAWyZqGq6MyCVpWVwegDVHKDwVGmqvT/EYeknJROVtU15liSpapxN2XTNURWNWxallNZlfuygnEAqAockWtmVbqqpEL08atxo3N9OtWtkQ9Fz6ouI1Id8eqAOXA0DFWNI0riUV1PqYroAMrBLc19yKrAm2OXrKqtzTEmf1ZlSkYtaSuxW/qIrnw8jxzp4loF08+abOEzngB2nMpn1IbmC+pl05udx2FF+X1I0Jh1BO8roMiqwOHZ+G11oYeqdbMZ9VDv7E2XLFXpKlmbVUljKU96bJfBvwF0nwAuA6oC+bLhE0DRk7ONoTbUB6iszEYmQOMAPDHgZR5rTnnE5rTC2spdlLyqQoGqQL7k8m8ArwFUBUCyQFUKqAqAZIGqFFAVAMkCVSmgKgCSBapSQFUAJIutqvAffcmauCrZm9jRBWA9tqritiUAACCBqgAAGQBVAQAyAKoCAGQAVAUAyABbVV93gHM+5783v2LChOloU06qmuMpqAoTpkNOOanqoqe+IqvChOmg02aqEq9XIavChAnTHlNyqvr45/v379///vf/Vnjq69qs6vvzcBov51nzjzpte753z2v28/DKH1pjzhPn/PXaobh7puPgmy9Dx5/tRUvLH+V8N5/csyDOq+Uvs880LVX97+/f3//58evHP0lVzfHUOlXJ2kY2Ld/8o04xz/eRaOoPr9duut+fOX/mN4/UrYuaf/OoSnj3zJ8eg8p//fPdaXoyz4I8LzdcviktVQ14VHXRU1+1rErc/Tjn/FW7UT+qEpM3xnBVPbyq44o7hpjzcFaHtrIG93CcD9fPvYe7+7/5ld+0/IWr+dbKL2d1z7+bcQrk+arjmjt5kid1VkUls7PhvJ7p/cijuBX34dXw1/Xi4yrJM//uWbumLX95nir/rCr0bH711R9/fabj4K+f8ohDw3l11teC442bFuenR0pVbhz8idWTebJbcQ1VzfEU52O4x6CIaEpV6eG2WkW4qvQ1757t661fzmllfH/WyqY1jIn9yyv6/dm8dz1qNe9x1h3MPd+HV23Oo3HcYYctf6G6z2SH+s4f1ScqMm5H8krxWa2qV3vpoizVXd9bfzz12RcHer7jVnk6vuvui9uTZha3u+eLw5Pn5p2xqi566uuYVVk6V5N+d+Xbq+pGyzI492rRaGnU5GuK9P7Nk7IO7W1vk0c3NvFVZbNNkmKaqRj96szM+64Rn41UFT5564+/PpP10Df/4ZXfaR20p0sKo4Pz6FSbeXEgU2l32oq0siqfqnR/u77YeKzqkb6rk4d2jzjVpJ39e9U8sfnk0VeoihzZub6qtozPElWp8jjhCp989We6Prtx8M0XF/Tpld8984fHsfxQ1WpVXfTU1zGrslLNJ3HDae3Bi81VZVQpbYTYGlAUN7GJ/agjmh0r3/6nuhjhqnKayhOlYKOz4NnPRcWQHcBo8ZmtqpuWP2kdq1njxKIDNU9qdP3x1+eJekjOv3nkTyJEj/zl1bMfy/iXLp/e8Zye6A6g3sH8ld+kpirxpoLi97+X2oqPw+r6cKDeh1czn9UiPSsW3P06NX+qSlErP7waw8mX3aEl9vpwtW//vkVW+S82Ie/5+joa2vwXTVXkfmTwnx7VeLDrxFntfOf43D2bC14vzDf2P88+YlfTD1iMsFD1x1efJ+ohHZ+Wv4yFMcThue7eeqUN8/PneW9deJIvER/9Cm7FNV4B5dm+rf7gvCt0vGmbVxyolxUOOblJ6PTKR60/viTUTbVyUtUcTyWoKv3xcPTCpH92B26Wapo9KrdHhBOa8n0FNNBTX1PNqjBhwhQ45aSqOZ7KRlXUE3TBzJttZsfFhClsyklVFz0lbQUAACQJZVUAAOADWRUAIAOQVQEAMgBZFQAgAxL62+oAAOAjob+tDgAAPpBVAQAyAFkVACADkFUBADIAWRUAIAOQVQEAMgBZFQAgA5BVAQAyAFkVACADkFUBADIAWRUAIAOQVQEAMgBZFQAgA5BVAQAyAFkVACADkFUBADIAWRUAIAOQVQEAMgBZFQAgA5BVAQAyAFkVACADkFUBADIAWRUAIAOQVQEAMgBZFQAgA5BVAQAyAFkVACADkFUBADIAWRUAIAOQVQEAMgBZFQAgA5BVAQAyAFkVACADkFUBADLAVhUAACQIVAUAyACoCgCQAbaqrt8FneZTwsSODQBviAxUFbsINMkWDIBDQqsqdr5iEC84U8SOSqLEvizgsHhVdZ3+50WSrf1JhSh2EQaSvVjgAEBVK0kqRLGLMJDsxQIHAKpaSVIhil2EgWQvFjgAWauqYwXrtO99UxrfOe+bsvBQNn1I4JIKUewiDEBVYD92U1Vbnepz6E4ma3/flJZuSFXJdXyfOeecd2yhvJISROwiDEBVYD8WqqqtiqpVn10btZUvi5HbbVT7ZUrlyZzKpp+VVYlVGGPBqhLBOden8YwrLRin+qyCp9YpjDXWRGhSVef6pOJufCEIvrtAVWA/lqmqrU5VRbQy1dJ0lxkbbqyqMYEy0qOArIp3G6rqVJ+1M9YMMNp9WMcK7VVUda5PnktBFGp5SeYHEIBFLFHVnLp8rayKabkRmTpNZlx6VjUQqCp13qeTzKratqpaU0LCHfurajASmVVJW/kv1rpLBlWB/ZivqnN9kimBv1ZfK6vinPdN0/mW0evbmZROeFal7DBmVXV9slUlV909q2qr4lS3szuA5/p0qqoqKK2CqsB+zFWV8NPl1nStrErLllhH5E6sm0yptLUGglU1GLyqdVVV9ZkSxFXGqoR8TlVNHcw8msyzwjqBUBXYj7mqaquqHW78qWRVCnuMih6zYqwsGWMeH4Wq6lxXp1NRtZqrjWF1Y+RKGMEa29p9rIp8DnKuT4VIv4aFw4w1ZYGqwH4sGaua05qu9wRQZU2smVCVWGkY0iqbfnjg53QdA1V1rqu61tWjLdGzKj2G4nPwaLZfVW2lx91xUFsZ2ZVekLlJtFOS+QEEYBFrVEXpaJ2I1td+VmgD454OYGesZIxVdUyuxeWcoGH12sySpJLaqiiqVj0dNJKcqt3gwdvMsaq2Kqp2YrhqdeJrlGRB1QNgCetUZbUtWcvFB5ktaDfmtQ1yow7gMDfwDXWd6ZcV6kr4u630sXU9cDIg+odVriAvlvKgvDLU2ySjv+QyJdgVlwuqAvuxparGVmAvH5rCKlslW/u9qpK9LuN9gbY61XWlZTiuxDdV1YB8N6Iwsjk5hk7ldepyLU2zkr1Y4ADs0QF0x93X9yySrf1eVTlfRLj0ISozICqcq4fzvMvGx5LWjq0i2Bc0YIA/9mUBh2XbDuD2JFv7k/qXd7GLMJDsxQIHIOu/rBCTpEIUuwgDyV4scACgqpUkFaLYRRhI9mKBAwBVrSSpEMUuwkCyFwscAKhqJUmFKHYRBpK9WOAA2Kry/hRJPOIGyEfsqADwtkj9dwABAICn/5OlAADAoSoAQBZAVQCADICqAAAZsFhVnz9//vTvf5hCps+fP+98Wfci35JHB6ELBKqCqhaQb8mjg9AFAlVBVQvIt+TRQegCgaqgqgXkW/LoIHSBQFVQ1QLyLXl0ELpA0lTVh3fFj7/FFkrqqurvb4vbe/cvMHeMnL0JaG+rQegCgarSUFV/f6v9Gc5ZqklEVStK/iaBqgJJXFUff/q2ePdHfLnsqqr+/tb6ua+OkT8ANo8rqmrjkh8aqCoQqCq2qqRZxh/8YqxgHe/vb1c2+aupavOSHxqoKpANVSW08uFdURTf/vLXYJyBb37+KFb76+fvxnk//vbvf5/++eUb2ddTn4Wq1ObjDg8y6bW2Y+JH62X71gUgW/wgg6K4vb8flxtKkCvs2w1bVnK9hNpnrctIlH8su9igY/TpdEyEwjpdYtcdK27vu2G+/HlIc6/u0bcHqgpkY1UVaozpw7viu5/+0S1misnWk6uq/95AVqXau9ZERSuTHzpWGC3eUZW+Au/YdVQ1o+SkqoikS88DjfX8fUmto6nG7Pp7dq/9Jq0KjpH9qa0sw9KF2wqoKpDNs6rx6x8/mj/YJBIrkShJhUFVqsFrWYBsQqzjToeuc7Iq3wo7sKzkdFYlhEHmNHpqM20Nyy8TeZW+JvWZPvr2QFWB7Kkqb69N5F/f/fQPVDU0My2XYLe3o4DctsbTUdWMkns6gPJ7IWVBFHi5qrSM05M0eVR1lceWUFUgu6nq3w/vCvX1tx+Gkamf/jBX/ueXb8Yk66+fvyvenKpkmxqygdv7Xn0aVlnUAdTb6/YsK7n2OoV6Vtjf39v2sjqwrudcKFVp87RHk5dURR99e6CqQPZTldDQgOascdYPH8QcOdD+zQ8/OlnVuPS4w+p8zuiS6tV4htX1ceH762RVs0ouC37LmCytKqzUAjEcvqIDqIVJHe6iquhx/s2BqgJJ82WFg09ErbVGTCba/7U6LCRBJX/bQFWBQFVpqGoKbeR63+d7l0F7Ww1CF8hqVWkvPZldPExbq8roocTNWiK1N/spXY5vmEJVgSCrykFVyZBvyaOD0AUCVUFVC8i35NFB6AKBqqCqBeRb8uggdIHYqvoMANiHuE09d2xVHTgjSIc52Wua5Fvy6CB0gUBVEci31uZb8uggdIFAVRHIt9bmW/LoIHSBQFURyLfW5lvy6CB0gUBVEci31uZb8uggdIF4VVUUxSVV6X+mcgl9UxZl84b/qVi+tTbfkkcHoQtkSlWkraCqcFbWWvXPS6zodcyaNX/NZZvv2t7mlU0VLrMqBFUFckFVrq02UNWbZ1Wt7Zhsm+ovLPVNWYjfX9Aa7vw1528eUvKLzC+bdpdzypY4UFUgl1Vl2QqqCie41nbMSYM8OcasNedvvmt7u1y2vim1v3Glf0kfqCqQWarSbeVRlf5v3/X6o6XrzVjpVB3rmJjvT+jFvVXtVq+fRl11Oy1EN8beGzXnCoTWWieh8Lpm3przN1cl91wIKp7uhRAbdMy86pfLZt4c/YZNEagqkLmqkraiVGUOKJg/FqJXZ0pVegfFqXjujZNuIeSIhiEo1l3a2xUJqrV9UzpapRvt7DXnb35BVUQ8qQsxdu6syF8sm7V7qOpNsUVWZVeZsUZZ8ztPVqXqIVlRzTsv2ULcOuv8DEnZ9MTeiDnXYHWt1Xxv4AZg/pqLNr+UVTnxpC8EfYtAVgUm2GKsilDVaIZQVclFVCWfVpW3Fmt7887Zl3W1dmIc2Y30zDWXbn6xAyi/q7uDJ2FbqSrPwFX6QFWBbPIE0OkAEg9pfB3ASVX1TWO1Bq2fqHVQ9AN1zZhA2T9DQu3NnnMV1tTayQLOb8ILh65tTFU5F4KIJ/1rNCtVpW+YV04FVQWz1XtVnmF1NcrqH1afzKrcXzeRuywZK925xByqlO5PvVzxBr2m1jo9KevhhTlWOG/N5ZvrJScvBBFP4kKsVhV1oTMBqgok5G31heR2G9yPfGttviWPDkIXyK7/BrBvSiOhgakE+dbafEseHYQukJ3/ubKW/MNTknxrbb4ljw5CFwj+skIE8q21+ZY8OghdIFBVBPKttfmWPDoIXSBQVQTyrbX5ljw6CF0ga36x5gsAYDlxm3ruLP4dQAAAuD5QFQAgA6AqAEAGQFUAgAz4P6P2c5AfixBAAAAAAElFTkSuQmCC" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAARkAAABcCAIAAADVkFYrAAAJ3ElEQVR4nO2dTdqzKgyGXZUDV8PIrTh1H85dRufn6ibeHXgGIAQSEBEt7ffco9YfDJLHBAq2+wMA1KD7tAEA/AjQEgB16P7+/v5rmA2AL8Fo6dNmyDRrGACc1rUE2ufTbtIKrWvpsxmwpR1LNO3Y06zzPA+0lEU7lmjasadZ53meqlpax2F+1ylq2zZoKU479kBLlgwtrWM3ru4zl8s6dhHseWU05TGfNsGjHXugJcuxltZxGMdB1orWFRWbdyK0dBft2AMtWY609J6Hw7zt0bi0qE4t5Ptr6r3vf3+vqY/Z00+vYo+Rd2hz3CWVUt7lnLmiWaUGpbTk3RF+e0L7i++JteRSG/8QaS2950HHnvcsRKZdKQ/GpdfUB20vaskeE/ts/CjbmY+11E8vonPioovSF+GmX3Dkc1p6TX0nK0ow6rwll9r4h0hpSQvoeDjhubhknTUSe3anPYpL+hCl1CUtLTYE9b2NS8ui1OKrRDv3/VoykhHjkpWTM1omGcVkSy618Q+R0tI6jqsZmmsiLhG/cD54IS7ZkJHlMeJ25757XJqmPtRS7PL149Kiun5asnO819T3SqlLgQlashz1l3KGuZ+KS/sTtZ9ecvBJxiwal6jrXdGSuZSaqJbU9JI8+JH+klZHrybxHnhXs5HqWp4HLVlytSTp5aJSjpH6S9OpHCTtJ1e19JpU33dqIXmTN/bg9Z60KUH/6vb+kljF19R3OoCZnWZDiS3QkiVfS0F8shmc/qD3+z2snDHAJIHHkGet7k8LYSkRlHz/jjpazGP4xtekpolqgzqrdxm3U3++3OWPa2lRtI5MJIvy4lOQAxdESmjJclVLu6TC/UZH1+SU/fQVvtt8J9EjuKilZfLjjNXMorpOLW6MzwsTRvG3aCnsLy1KP3ViXabwB4YyS0qb99eolePxwYkKGaDgMXvcMX18b4f/NO5cADDDdsxrro890DHxSemwtyg6AEGDkpUQ/VDkzLFxRSNUXaatni+ZXWB2n3sCFAgcWrJcz/FuRBh7CDISlr0lchjTq6mX45kidARyKaaNRYvqp0mRGEHH5G/QksEOwXdePLQDDVJkNF/jP0SlLLnZC76Gr50nfpzjER+5zIGW2BetW9pN8uOiG60oy7EO7oxUcGBC+DvThVGQT7tJK3ytlp6lHUs07djTrPM8D7SURTuWaNqxp1nneR5oKYt2LNG0Y0+zzvM80FIW7ViiaceeZp3neaClLNqxRNOOPc06z/O0riUAvoXu7+/v05IB4BeAlgCoA7QEQB2gJQDqAC0BUAdoCYA6QEsA1AFaAqAOjWspWAnfPqV22jcRgocRX+tdREpLZi2t8Q23stZzFm9BLTXqPQ/ekeb8c3ZDS/4h5rUAN6luHYX24RutJ9jN3KT7jKyNs9R8Kjb9QEvkFXj283se6GZy3fc8eIcxtzpt5j+jpUPcmzPuuIR+Io7jyJpT2ugMibbOt7RXoCVtc+FbSvK0JBdOBca3QUs3lXvjrYj9jYnb6LWq/fJjWio0vyAucSPErYdackmj2UbSRVYnuXLsDH3RSDrqnSaET+H63Eh6Cbn6wrm+ISRHmvndWke9Pbwou9gNtTjWkt8OGc/GeItIhvJtwRZyReKTnh74PeeV9V8FxOtg7/eZfmymlsLOk18Bfu+2Iy3xLPw9jyT9DiUkaUm4gklLEk+A8MSUvbSG3nHxtyxRg4PnhttOry1piT4Z4n/Lc0MtDrUUFJ+pJalFpObmxrMt9D4Nw2DvzjC/4/c8qKznFmIf0d3wW7Rka9IRr5C1lBGXIo3AHkvpuKT1nRjwkGzYIl7IS2PvMbOvVo/Hf/e+QL+CkYEDIYoHrrtfU3x21q7FbXFJ/io1d9CgbIu7kcP8tm843aUk3vPAhlgThGaf7jKd05Kt3u4vpf0lXgHyjPY947C/RF8We0VLrLSDwCuS0JJUZqaW8uPStVpkaSnSeYoQaRG5uZnxwhZ9T4iK1nmQnSryWM/SUkmHKXvsQbKF3hD7Pda8/qlUh+vsj0SSYg5yvFlKcfwUKpbj0SqYU1lpQTIQf0YI94zlG0LFYzmeqCWxv1S5FsdaoidmRKVoi4jNzY0XqrO952EYXHvbTC9+z3lmKjVBaPVNWvLCMU9gxW6cv4O7hNtPk9qu67phHDPjEuvSvuehG8eDoQd6MXItXprYP87UkleeZwmpaHTsIdSSXP/qtcjQEm+4wCChWyC1iNjcgvGx6pAG5zmhcIJnFh2LmSN1znly+hTkeCnW9A+yWU+yKxQ9Tz5I/g0pSeAfR/CYb2uRbfPu9RkN5M97uMqBzOrQfsvRdDkyhhQ/84vqRrY1bnUIfb6dCieNz8c7i9hy4UhWvaYtKplkXO1Hmst8n5aK+TEtAfAxoCUA6gAtAVAHaAmAOpzUku1sh78J8d50fAhE3hMM+sbGgFfz97jBdf+V/i1ol4SWuFCYx4YOb/89kIze2GLGNVViMJ4qDa9uZVM7zHn/zMgZ+BDJuOQcOjLmLscl/7doXch7HsaVxZr9Al6Y2Ytgwa70l15ijzSFEIAqHOR4bBKLHxikuDSTqWdGFp6WVjKFZrVaIpOz7MxFUij5R3b2z7lHsKnJEBO4g7iWeJeEJ2eJ/hKd0RRqiU7xFbQ0jl5+R8WzSy1iUDg7y7dk/4Y8D9xBSksJnwu6M8GxYSTI0FIgR3+KKJ1RLMz38ufThlbzScLQEriDdI4XDQDbtsmDE/4R5qiTcSmYGW12vuk6RK/4A20gLoFHOBwTT3tisvukv5b0l+z5uoumI5VO7oq0dG75GgAl5Py+pAe/xJV18gLobQuX5+mIQuPSflBCSxvbcqQlsb90evkaACVkaCk5r9lGnWGeR+rzgV5OjokTgtV1BVpKLl8DoBJRLdGlh/4idNspmuehs6+fMsN6wzhGFoZvLMS4woW4ROTlShNXrSLQgCbAfDwA6gAtAVAHaAmAOkBLANQBWgKgDtASAHUo0FL4i457WWJyLhEAv03ePPHwTa3ya5t5AUktpX8gEvfGTjn3ojkA7iBjnvg60pfYevMT9nkL4ouQk1pKr88T90Y3sv+uA+ADZGopEpeIlujkhGMtpdfniXuTp2CeHfg42TmeOP00R0sF6/PEvclTgq8kTqLLBh7iRFzaN8haiuZ459fniXvTp2BdBfg4Z3I8o5waOd69cWllfy8HwO18qL+UjiPi3uQpsf/6gqLAY1wbEy/N8eT1ee5IcfVeaklfIDT+Z3IA3M0NcSkoIH99Hj1SXL0XX9LHUz4MPYCHOTHvwXkyW2PuAUcG/ySYjwdAHaAlAOoALQFQB2gJgDpASwDUAVoCoA7QEgB1gJYAqAO0BEAdoCUA6gAtAVCH/wHBgqeLB57saAAAAABJRU5ErkJggg==" alt="" />
好了,这一课我们结束了。
上一篇:mysql颠覆实战笔记(一)--设计一个项目需求,灌入一万数据先
下一篇:mysql颠覆实战笔记(三)-- 用户登录(二):保存用户操作日志的方法
mysql颠覆实战笔记(二)-- 用户登录(一):唯一索引的妙用的更多相关文章
- mysql颠覆实战笔记(三)-- 用户登录(二):保存用户操作日志的方法
版权声明:笔记整理者亡命小卒热爱自由,崇尚分享.但是本笔记源自www.jtthink.com(程序员在囧途)沈逸老师的<web级mysql颠覆实战课程 >.如需转载请尊重老师劳动,保留沈逸 ...
- mysql颠覆实战笔记(一)--设计一个项目需求,灌入一万数据先
版权声明:笔记整理者亡命小卒热爱自由,崇尚分享.但是本笔记源自www.jtthink.com(程序员在囧途)沈逸老师的<web级mysql颠覆实战课程 >.如需转载请尊重老师劳动,保留沈逸 ...
- mysql颠覆实战笔记(四)--商品系统设计(一):商品主表设计
版权声明:笔记整理者亡命小卒热爱自由,崇尚分享.但是本笔记源自www.jtthink.com(程序员在囧途)沈逸老师的<web级mysql颠覆实战课程 >.如需转载请尊重老师劳动,保留沈逸 ...
- mysql颠覆实战笔记(五)--商品系统设计(二):定时更新商品总点击量
继续回到沈老师的MYSQL颠覆实战,首先回顾下上一节课的内容,请大家会看下上节课写的存储过程. 打开prod_clicklog表, 我们只要把日期(不含时分秒)的部分存在数据库中, 如果同一日期有相同 ...
- mysql颠覆实战笔记(七)--白话理解事务
今天我们学习web开发级mysql颠覆实战课程第9课没MYSQL事务(一):白话理解事务.前面有两节课第7讲:商品系统设计(四):商品属性设计之自定义属性,第8讲:商品系统设计(五):一维属性的商品价 ...
- mysql颠覆实战笔记(六)--商品系统设计(三):商品属性设计之固定属性
今天我们来讲一下商品属性 我们知道,不同类别的商品属性是不同的. 我们先建一个表prod_class_attr:
- mysql颠覆实战笔记(八)--mysql的自定义异常处理怎么破
这一节课,沈老师带我们了解事务的异常 什么是异常? 我们先插入一组数据: ,10.5); 这个是正常的.但是我们把插入的user_money的值故意弄错:如下 ,‘abc’); 那么我们会得到一个ER ...
- Struts2(二.用户登录模块)
1.编写Javabean /src/myuser/User.java 在strut1中,Javabean需要继承于struts1 api中的ActionForm类.struts2没有此要求 strut ...
- MYSQL初级学习笔记二:数据表相关操作及MySQL存储引擎!(视频序号:初级_5,7-22|6)
知识点三:数据表相关操作(5,7-22) --------------------------------整型--------------------------------- --测试整型 CREA ...
随机推荐
- HDU4864:Task(贪心)
题意: 给出n个机器和m个任务,对于一天来说,每个机器有最大工作时间xi,可接受最大等级yi,每个任务有一个工作时间xi,一个等级yi,可获价值为500*xi+2*yi,任务需要在一台机器一天内完成, ...
- Codevs No.2144 砝码称重2
2016-05-31 22:01:16 题目链接: 砝码称重2 (Codevs No.2144) 题目大意: 给定N个砝码,求称出M的重量所需砝码最小个数 解法: 贪心 使砝码数量最小,当然是每个砝码 ...
- WebService学习之四:关于JAX-WS 注释
基于 XML 的 Web Service 的 Java API"(JAX-WS)通过使用注释来指定与 Web Service 实现相关联的元数据以及简化 Web Service 的开发.注释 ...
- (转)定制iOS 7中的导航栏和状态栏
近期,跟大多数开发者一样,我也正忙于对程序进行升级以适配iOS 7.最新的iOS 7外观上有大量的改动.从开发者的角度来看,导航栏和状态栏就发生了明显的变化.状态栏现在是半透明的了,这也就意味着导航栏 ...
- linux性能问题(CPU,内存,磁盘I/O,网络)
一. CPU性能评估 1.vmstat [-V] [-n] [depay [count]] -V : 打印出版本信息,可选参数 -n : 在周期性循环输出时,头部信息仅显示一次 delay : 两次输 ...
- MySQL支持Emoji表情
让MySQL支持Emoji表情,涉及无线相关的 MySQL 数据库建议都提前采用 utf8mb4 字符集. utf8mb4和utf8到底有什么区别呢?原来以往的mysql的utf8一个字符最多3字节, ...
- Java中的Filter过滤器
Filter简介 Filter也称之为过滤器,它是Servlet技术中最实用的技术,Web开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态图片文件 ...
- CSS关键字
1.initial initial 关键字用于设置 CSS 属性为它的默认值. initial 关键字可用于任何 HTML 元素上的任何 CSS 属性. 版本: CSS3 JavaScript 语法: ...
- android知乎小圆圈刷新效果
前几天看到包括知乎在内的很多应用都使用到了一种小圆圈划动刷新的效果,仔细查了一下,原来是android v7包里面最新的刷新效果.使用起来也是十分简单的. 首先先建立一个activity,在布局文件里 ...
- [刷题codeforces]651B/651A
651B Beautiful Paintings 651A Joysticks 点击可查看原题 651B是一个排序题,只不过多了一步去重然后记录个数.每次筛一层,直到全为0.从这个题里学到一个正确姿势 ...