%%%。设f(x)=a0+a1x+a2x^2+ … + anx^n.求f(x)=0的x。

数据范围很大,高精度只能骗分。

运用类似hash的思想。 如果这个等式mod p 还成立(p为质数)那它很可能就是成立。

多取几个质数(大质数更优)就可以几乎确定了。(70分)

100分时m很大,不能都算出来。

仔细分析,如果在模p时f(x)!=0,则f(x+p)肯定也不是解。这样一来只需枚举从1到p的数即可确定所有的数是否能为解。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 100000 + 10;
const int maxm = 1000000 + 10; const long long p[]={11261,19997,22877,21893,14843,17851};
long long a[110][10];
long long f[maxn][10];
int n,m,cnt;
char s[maxn];
bool able[maxm];
int res[maxm]; long long calc (long long i,int j) {
long long sum=a[0][j]; long long t=1; i=i%p[j];
for(int k=1;k<=n;k++) {
t=t*i%p[j];
sum=(sum+a[k][j]*t)%p[j];
}
return sum;
} int main() {
bool sgn;
scanf("%d%d",&n,&m);
for(int i=0,l;i<=n;i++) {
scanf("%s",s);
l=strlen(s);
sgn=0; for(int j=0;j<l;j++) {
if(s[j]=='-') {
sgn=1;
continue;
}
for(int k=0;k<6;k++) a[i][k]=(a[i][k]*10+s[j]-'0')%p[k];
} if(sgn)
for(int k=0;k<6;k++) a[i][k]=p[k]-a[i][k];
}
for(int j=0;j<6;j++)
for(int i=1;i<=p[j];i++)
f[i][j]=calc(i,j); memset(able,1,sizeof(able)); for(int j=0;j<6;j++)
for(int i=1;i<=m;i++)
if(f[i%p[j]][j] != 0) able[i]=0;
for(int i=1;i<=m;i++) if(able[i]) res[++cnt]=i; printf("%d\n",cnt);
for(int i=1;i<=cnt;i++) printf("%d\n",res[i]);
return 0;
}

codevs3732 解方程的更多相关文章

  1. codevs3732==洛谷 解方程P2312 解方程

    P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 已知多项式方程: a ...

  2. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  3. HDU 4793 Collision --解方程

    题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,v ...

  4. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  5. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  6. Ural 1046 Geometrical Dreams(解方程+计算几何)

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...

  7. 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)

    心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...

  8. 5.5Python数据处理篇之Sympy系列(五)---解方程

    目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...

  9. python 解方程

    [怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7] ...

随机推荐

  1. 51nod1264线段相交

    1264 线段相交 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出平面上两条线段的两个端点,判断这两条线段是否相交(有一个公共点或有部分重合认为相交). 如果相交, ...

  2. QQ空间g_tk加密算法PHP版

    QQ空间g_tk加密算法PHP版 //G_tk计算 function getGTK($skey){ $hash = 5381; for($i=0;$i<strlen($skey);++$i){ ...

  3. C# 类中隐藏基类方法和Partial

    今天对于.NET开发人员来说最开心的事情莫过于微软搞开源了,这觉得是给搞.NET开发的长脸.虽然我是一个初学者,这无疑给我极大的学习动力.Fighting!!! 当一个类从父类继承了一个成员时,也就继 ...

  4. mac 下 配置 xhprof

    1: 下载 安装 xhprof wget http://pecl.php.net/get/xhprof-0.9.3.tgztar zxf xhprof-0.9.3.tgzcd xhprof-0.9.3 ...

  5. 懒惰的JY--关于遍历

    先上题: [问题描述] 众所周知,JY的百度搜索算法已经练的炉火纯青,任何搜索题都能0.000ms出解. 不幸的是,JY遇到了一道百度搜索算法解决不了的题目,题目是这样的: 给定N个数A[1] A[2 ...

  6. 一道简单的IOS面试题-b

    题目: (参考:陈曦 包子的iOS开发)我在code review的时候,发现了某个viewController中有这样一段代码,觉得很不妥当,请尝试找出代码中的任何问题,或者可以优化的部分. -(i ...

  7. Android Studio 单刷《第一行代码》系列 05 —— Fragment 基础

    前情提要(Previously) 本系列将使用 Android Studio 将<第一行代码>(书中讲解案例使用Eclipse)刷一遍,旨在为想入坑 Android 开发,并选择 Andr ...

  8. CSS定义字体间距 字体行与行间距

    CSS定义字体行间距 line-height:xxpx; CSS定义字体间距 下面我们讲述一下CSS的文本属性,还是先来看一下文本属性的详细列表: 属性     属性含义     属性值 Word-s ...

  9. c#用反射原理递归遍历复杂实体对象

    之前在网上看到的都是遍历那种比较简单的实体对象,但是如果有实体嵌套,甚至是包含有List<XXInfo>这种属性的时候就没有办法处理了.通过递归遍历的方式可以完成对复杂实体对象的所有属性的 ...

  10. 全面学习cookies

    来自<javascript高级程序设计 第三版:作者Nicholas C. Zakas>的学习笔记(五) 本来想自己总结的,但是某文总结太好了(http://www.cnblogs.com ...