Slim Span

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://poj.org/problem?id=3522

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

HINT

题意

给你一个无向图,然后让你找到一个生成树,使得这棵树最大边减去最小边的差值最小

题解:

跑kruskal,我们枚举最小边之后,我们就可以跑kruskal

由于kruskal是排序之后,贪心去拿的,那么最后加入的边一定是最大边

然后我们注意更新答案就好了

代码

#include<iostream>
#include<stdio.h>
#include<cstring>
#include<algorithm>
using namespace std; #define maxn 100005
struct edge
{
int u,v,w;
};
edge E[maxn];
int fa[maxn];
int n,m;
int ans;
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int fi(int x)
{
if(x!=fa[x])fa[x]=fi(fa[x]);
return fa[x];
}
int uni(int x,int y)
{
int p = fi(x),q = fi(y);
if(p==q)return ;
fa[q] = p;
return ;
}
void solve()
{
ans = ;
sort(E+,E++m,cmp);
int flag = ;
for(int i=;i<=m;i++)
{
for(int j=;j<=n;j++)
fa[j]=j;
int low = E[i].w,high = E[i].w;
int cnt = ;
uni(E[i].u,E[i].v);
cnt++;
for(int j=i+;j<=m;j++)
{
if(uni(E[j].u,E[j].v))
{
cnt++;
high = max(high,E[j].w);
}
}
if(cnt == n-)
{
flag = ;
ans = min(ans,high - low);
}
}
if(flag == )
ans = -;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==&&m==)break;
memset(E,,sizeof(E));
for(int i=;i<=n;i++)
fa[i]=i;
for(int i=;i<=m;i++)
scanf("%d%d%d",&E[i].u,&E[i].v,&E[i].w);
solve();
printf("%d\n",ans);
}
}

POJ 3522 Slim Span 最小差值生成树的更多相关文章

  1. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  2. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  3. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  4. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  5. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  6. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  7. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  8. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  9. Poj(3522),UVa(1395),枚举生成树

    题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submis ...

随机推荐

  1. 如何打开和关闭Oracle Flashback

    1.打开flashback: 关闭数据库 SQL>shutdown immediate; 启动到mount方式 SQL>startup mount; 如果归档没有打开,打开归档[因为fla ...

  2. OutputCache缓存各参数的说明

    Duration 缓存时间,以秒为单位,这个除非你的Location=None,可以不添加此属性,其余时候都是必须的. Location Location当被设置为None时,其余的任何设置将不起作用 ...

  3. POJ 1064 Cable master

    Cable master Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37865   Accepted: 8051 Des ...

  4. ylbtech-数据库设计与优化-对作为复选框/单选列表的集合表的设计

    ylbtech-DatabaseDesgin:ylbtech-数据库设计与优化-对作为复选框/单选列表的集合表的设计 -- DatabaseName:通用表结构-- -- 主要是针对将要设计的表对象, ...

  5. DIV+CSS常见问题:DIV如何设置一个像素高度?

    CSS如何控制DIV实现1像素高度呢?问题看起来很简单,但万恶的IE6会让你很麻烦,不过解决办法很多,本文将介绍最简单的一种:DIV{height:1px;line-height:1px;font-s ...

  6. net中前台javascript与后台c#函数相互调用

    问: 1.如何在JavaScript访问C#函数? 2.如何在JavaScript访问C#变量? 3.如何在C#中访问JavaScript的已有变量? 4.如何在C#中访问JavaScript函数? ...

  7. XSLT 调用java

    XSLT调用JS  http://www.ibm.com/developerworks/cn/xml/tips/x-tipxsltjs/index.htmlXSLT调用JAVA  http://unm ...

  8. 关于在Eclipse里面启动了服务,但是localhost:8080无法访问的问题:

    今天eclipse重新换了一个然后写项目,结果发生了一些bug,当在Tomca服务开启之后,浏览器端输入localhost:8080无法访问,以为是服务器没有搞定,检查了没问题,百度了一下有很多乱七八 ...

  9. [转] Web前端优化之 Cookie篇

    原文链接: http://lunax.info/archives/3095.html Web 前端优化最佳实践第三部分面向 Cookie .目前只有 2 条实践规则. 1. 缩小 Cookie (Re ...

  10. [Hive - LanguageManual] GroupBy

    Group By Syntax Simple Examples Select statement and group by clause Advanced Features Multi-Group-B ...