BZOJ3550: [ONTAK2010]Vacation
3550: [ONTAK2010]Vacation
Time Limit: 10 Sec Memory Limit: 96 MB
Submit: 91 Solved: 71
[Submit][Status]
Description
有3N个数,你需要选出一些数,首先保证任意长度为N的区间中选出的数的个数<=K个,其次要保证选出的数的个数最大。
Input
第一行两个整数N,K。
第二行有3N个整数。
Output
一行一个整数表示答案。
Sample Input
14 21 9 30 11 8 1 20 29 23 17 27 7 8 35
Sample Output
HINT
【数据范围】
N<=200,K<=10。
Source
s=;t=*n+;
for1(i,*n)a[i]=read();
insert(s,,k,);insert(*n+,t,k,);
for1(i,n)insert(,i+,,-a[i]);
for2(i,n+,*n)insert(i-n+,i+,,-a[i]);
for2(i,*n+,*n)insert(i-n+,*n+,,-a[i]);
for1(i,*n+)insert(i,i+,inf,);
需要搞清楚a[i]在哪个等式中第一次出现,在哪个等式中第二次出现,以及正负号各是什么。
b[i]的出现很显然,i为正,i+1为负
然后求最大费用最大流就可以过了。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1000
#define maxm 100000
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,mincost,tot=,s,t,a[maxn],head[maxn],q[maxm],d[maxn],from[*maxm];
bool v[maxn];
struct edge{int from,next,go,v,c;}e[*maxm];
void ins(int x,int y,int z,int w)
{
e[++tot].go=y;e[tot].from=x;e[tot].v=z;e[tot].c=w;e[tot].next=head[x];head[x]=tot;
}
void insert(int x,int y,int z,int w)
{
ins(x,y,z,w);ins(y,x,,-w);
}
bool spfa()
{
for (int i=s;i<=t;i++){v[i]=;d[i]=inf;}
int l=,r=,y;q[]=s;d[s]=;v[]=;
while(l!=r)
{
int x=q[++l];if(l==maxn)l=;v[x]=;
for (int i=head[x];i;i=e[i].next)
if(e[i].v&&d[x]+e[i].c<d[y=e[i].go])
{
d[y]=d[x]+e[i].c;from[y]=i;
if(!v[y]){v[y]=;q[++r]=y;if(r==maxn)r=;}
}
}
return d[t]!=inf;
}
void mcf()
{
while(spfa())
{
int tmp=inf;
for(int i=from[t];i;i=from[e[i].from]) tmp=min(tmp,e[i].v);
mincost+=d[t]*tmp;
for(int i=from[t];i;i=from[e[i].from]){e[i].v-=tmp;e[i^].v+=tmp;}
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();k=read();
s=;t=*n+;
for1(i,*n)a[i]=read();
insert(s,,k,);insert(*n+,t,k,);
for1(i,n)insert(,i+,,-a[i]);
for2(i,n+,*n)insert(i-n+,i+,,-a[i]);
for2(i,*n+,*n)insert(i-n+,*n+,,-a[i]);
for1(i,*n+)insert(i,i+,inf,);
mcf();
printf("%d\n",-mincost);
return ;
}
就当我懂了T_T
BZOJ3550: [ONTAK2010]Vacation的更多相关文章
- BZOJ3550 [ONTAK2010]Vacation 【单纯形】
题目链接 BZOJ3550 题解 单纯形裸题 题意不清,每个位置最多选一次 #include<algorithm> #include<iostream> #include< ...
- bzoj3550: [ONTAK2010]Vacation(单纯形法+线性规划)
传送门 直接暴力把线性规划矩阵给打出来然后单纯形求解就行了 简单来说就是每个数记一个\(d_i\)表示选或不选,那么就是最大化\(\sum d_ic_i\),并满足一堆限制条件 然后不要忘记限制每个数 ...
- bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线
学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...
- BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划
BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得 ...
- BZOJ 3550: [ONTAK2010]Vacation [单纯形法]
有3N个数,你需要选出一些数,首先保证任意长度为N的区间中选出的数的个数<=K个,其次要保证选出的数的个数最大. 好像都是费用流... 单纯性裸题呀... 注意每个数最多选1次 #include ...
- 【BZOJ1283/3550】序列/[ONTAK2010]Vacation 最大费用流
[BZOJ1283]序列 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和 ...
- BZOJ 3550 ONTAK2010 Vacation 单纯形
题目大意:给定一个长度为3n的区间.要求选一些数,且随意一段长度为n的区间内最多选k个数.求选择数的和的最大值 单纯形直接搞 注意一个数仅仅能被选一次 因此要加上xi<=1这个约束条件 不明确3 ...
- 【Richard 的刷(水)题记录】
大概想了想,还是有个记录比较好. 9/24 网络流一日游: 最大流:bzoj1711[Usaco2007 Open]Dining 拆点 BZOJ 3993 Sdoi2015 星际战争 二分 P.S.这 ...
- 【BZOJ】【3550】【ONTAK2010】Vacation
网络流/费用流 Orz太神犇了这题…… 我一开始想成跟Intervals那题一样了……每个数a[i]相当于覆盖了(a[i]-n,a[i]+n)这个区间……但是这样是错的!!随便就找出反例了……我居然还 ...
随机推荐
- js_event.keycode值大全
onkeydown 当用户按下键盘按键时触发onkeypress 当用户按下字面键时触发 onkeyup 当用户释放键盘按键时触发 =============================== ...
- 10 个非常有用的 AngularJS 框架
AngularJS是最流行的开源web app框架.AngularJS被用于解决阻碍单页应用程序开发的各种挑战. 你作为一个AngularJS用户,却不知道一些可以帮助你美化编码的资源?那么一定不能错 ...
- 【leetcode】368. Largest Divisible Subset
题目描述: Given a set of distinct positive integers, find the largest subset such that every pair (Si, S ...
- C++中extern “C”含义深层探索
C++中extern “C”含义深层探索 extern “C” 是一个双向都需要用到的语法表示,就是说在cpp引用c头文件,或者c引用cpp文件时都需要用到.但extern “C” 永远只能在cpp引 ...
- bzoj 1006: [HNOI2008]神奇的国度
这是个标准的弦图,但如果不知道弦图就惨了=_= 趁着这个机会了解了一下弦图,主要就是完美消除序列,求出了这个就可以根据序列进行贪心染色. 貌似这个序列很神,但是具体应用不了解…… 这道题为什么可以这么 ...
- MySQL用命令行导出数据库
MySQL命令行导出数据库:首先进入cmd然后:1. cd C:\Program Files (x86)\MySQL\MySQL Server 5.1\bin2. mysqldump -uroot - ...
- zedboard VmodCAM 图像采集 HDMI输出显示
本文叙述zedboard VmodCAM 图像采集 HDMI输出显示 参考: 1.color space详解资料 http://download.csdn.net/detail/xiabodan/ ...
- Mac开发利器之程序员编辑器MacVim学习总结
Emacs和Vim都是程序员专用编辑器,Emacs被称为神的编辑器,Vim则是编辑器之神.至于两者到底哪个更好用,网络上两大派系至今还争论不休.不过,相比之下,Emacs更加复杂,已经不能算是一个编辑 ...
- setEllipsize(TruncateAt where)
void android.widget.TextView.setEllipsize(TruncateAt where) public void setEllipsize (TextUtils.Trun ...
- Android Studio笔记(2)——快捷键
在朋友推荐下,上个星期黄老师我用上了Google的新黑暗工具,基于Intellij idea的新Android开发集成开发环境 ——Android Studio,用下来感觉还算不错,但作为一个ADT ...