3550: [ONTAK2010]Vacation

Time Limit: 10 Sec  Memory Limit: 96 MB
Submit: 91  Solved: 71
[Submit][Status]

Description

有3N个数,你需要选出一些数,首先保证任意长度为N的区间中选出的数的个数<=K个,其次要保证选出的数的个数最大。

Input

第一行两个整数N,K。
第二行有3N个整数。

Output

一行一个整数表示答案。

Sample Input

5 3
14 21 9 30 11 8 1 20 29 23 17 27 7 8 35

Sample Output

195

HINT

【数据范围】

N<=200,K<=10。

Source

题解:
做这题真是一种折磨。。。
复习了一下根据流量平衡方程建图的方法,主要是膜拜了byvoid的志愿者招募的题解。。。
让我们先列出流量平衡方程:a[i]表示i选不选,b[i]表示第i个等式的辅助变量
则:
0=0
a[1]+a[2]+……a[n]+b[1]=k
a[2]+a[3]+……a[n+1]+b[2]=k
…………
a[2*n+1]+a[2*n+2]+……+a[3*n]+b[2*n+1]=k
0=0
差分之后是
a[1]+a[2]+……a[n]+b[1]=k
a[n+1]-a[1]+b[2]-b[1]=0
a[n+2]-a[2]+b[3]-b[2]=0
…………
-a[2*n+1]-a[2*n+2]-………-a[3*n]-b[2*n+1]=-k
 
根据BYVOID所说的这段话:
可以发现,每个等式左边都是几个变量和一个常数相加减,右边都为0,恰好就像网络流中除了源点和汇点的顶点都满足流量平衡。每个正的变量相当于流入该顶点的流量,负的变量相当于流出该顶点的流量,而正常数可以看作来自附加源点的流量,负的常数是流向附加汇点的流量。因此可以据此构造网络,求出从附加源到附加汇的网络最大流,即可满足所有等式。而我们还要求最小,所以要在X变量相对应的边上加上权值,然后求最小费用最大流
 
所以我们构图:
    s=;t=*n+;
for1(i,*n)a[i]=read();
insert(s,,k,);insert(*n+,t,k,);
for1(i,n)insert(,i+,,-a[i]);
for2(i,n+,*n)insert(i-n+,i+,,-a[i]);
for2(i,*n+,*n)insert(i-n+,*n+,,-a[i]);
for1(i,*n+)insert(i,i+,inf,);

需要搞清楚a[i]在哪个等式中第一次出现,在哪个等式中第二次出现,以及正负号各是什么。

b[i]的出现很显然,i为正,i+1为负

然后求最大费用最大流就可以过了。

代码:

 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1000
#define maxm 100000
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,mincost,tot=,s,t,a[maxn],head[maxn],q[maxm],d[maxn],from[*maxm];
bool v[maxn];
struct edge{int from,next,go,v,c;}e[*maxm];
void ins(int x,int y,int z,int w)
{
e[++tot].go=y;e[tot].from=x;e[tot].v=z;e[tot].c=w;e[tot].next=head[x];head[x]=tot;
}
void insert(int x,int y,int z,int w)
{
ins(x,y,z,w);ins(y,x,,-w);
}
bool spfa()
{
for (int i=s;i<=t;i++){v[i]=;d[i]=inf;}
int l=,r=,y;q[]=s;d[s]=;v[]=;
while(l!=r)
{
int x=q[++l];if(l==maxn)l=;v[x]=;
for (int i=head[x];i;i=e[i].next)
if(e[i].v&&d[x]+e[i].c<d[y=e[i].go])
{
d[y]=d[x]+e[i].c;from[y]=i;
if(!v[y]){v[y]=;q[++r]=y;if(r==maxn)r=;}
}
}
return d[t]!=inf;
}
void mcf()
{
while(spfa())
{
int tmp=inf;
for(int i=from[t];i;i=from[e[i].from]) tmp=min(tmp,e[i].v);
mincost+=d[t]*tmp;
for(int i=from[t];i;i=from[e[i].from]){e[i].v-=tmp;e[i^].v+=tmp;}
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();k=read();
s=;t=*n+;
for1(i,*n)a[i]=read();
insert(s,,k,);insert(*n+,t,k,);
for1(i,n)insert(,i+,,-a[i]);
for2(i,n+,*n)insert(i-n+,i+,,-a[i]);
for2(i,*n+,*n)insert(i-n+,*n+,,-a[i]);
for1(i,*n+)insert(i,i+,inf,);
mcf();
printf("%d\n",-mincost);
return ;
}

就当我懂了T_T

BZOJ3550: [ONTAK2010]Vacation的更多相关文章

  1. BZOJ3550 [ONTAK2010]Vacation 【单纯形】

    题目链接 BZOJ3550 题解 单纯形裸题 题意不清,每个位置最多选一次 #include<algorithm> #include<iostream> #include< ...

  2. bzoj3550: [ONTAK2010]Vacation(单纯形法+线性规划)

    传送门 直接暴力把线性规划矩阵给打出来然后单纯形求解就行了 简单来说就是每个数记一个\(d_i\)表示选或不选,那么就是最大化\(\sum d_ic_i\),并满足一堆限制条件 然后不要忘记限制每个数 ...

  3. bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线

    学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...

  4. BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划

    BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得 ...

  5. BZOJ 3550: [ONTAK2010]Vacation [单纯形法]

    有3N个数,你需要选出一些数,首先保证任意长度为N的区间中选出的数的个数<=K个,其次要保证选出的数的个数最大. 好像都是费用流... 单纯性裸题呀... 注意每个数最多选1次 #include ...

  6. 【BZOJ1283/3550】序列/[ONTAK2010]Vacation 最大费用流

    [BZOJ1283]序列 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和 ...

  7. BZOJ 3550 ONTAK2010 Vacation 单纯形

    题目大意:给定一个长度为3n的区间.要求选一些数,且随意一段长度为n的区间内最多选k个数.求选择数的和的最大值 单纯形直接搞 注意一个数仅仅能被选一次 因此要加上xi<=1这个约束条件 不明确3 ...

  8. 【Richard 的刷(水)题记录】

    大概想了想,还是有个记录比较好. 9/24 网络流一日游: 最大流:bzoj1711[Usaco2007 Open]Dining 拆点 BZOJ 3993 Sdoi2015 星际战争 二分 P.S.这 ...

  9. 【BZOJ】【3550】【ONTAK2010】Vacation

    网络流/费用流 Orz太神犇了这题…… 我一开始想成跟Intervals那题一样了……每个数a[i]相当于覆盖了(a[i]-n,a[i]+n)这个区间……但是这样是错的!!随便就找出反例了……我居然还 ...

随机推荐

  1. jQuery AJAX Call for posting data to ASP.Net page ( not Get but POST)

    the following jQuery AJAX call to an ASP.Net page. $.ajax({ async: true, type: "POST", url ...

  2. 升级ionic版本后,创建新项目报Error Initializing app错误解决

    命令行,进入项目路径后,运行 ionic start myApp --v2 命令执行后,报如下错误 Installing npm packages...Error with start undefin ...

  3. 微信公众号与HTML 5混合模式揭秘1——如何部署JSSDK

    本文是连载JSSDK+H5的书,这里是第一篇揭秘————如何部署JSSDK 部署JSSDK不会太难,有时候需要一点后台知识,但也不是太难的那种,本节主要是用PHP作为后台参考语言,为了照顾初学者,把代 ...

  4. background-size 设置背景图片的大小

    background-size 设置背景图片的大小,以长度值或百分比显示,还可以通过cover和contain来对图片进行伸缩. 语法: background-size: auto | <长度值 ...

  5. Java Web动态配置log4j

    导入log4j的jar包, 在web.xml中做如下配置 <!-- Log4j Configuration --> <context-param> <param-name ...

  6. php 读取文件头判断文件类型的实现代码

    php代码实现读取文件头判断文件类型,支持图片.rar.exe等后缀. 例子: <?php $filename = "11.jpg"; //为图片的路径可以用d:/uploa ...

  7. highchars

    var drawChart = function(sourceUrl) { $.ajax({ "type" : "post", "url" ...

  8. GridView中的荧光棒效果

    使用 ASP.NET中的GridView控件的时候会遇到这个效果,当时觉得很神奇,其实就是两句代码的事儿,可是时间长了,有点儿忘了,今天练习一下, 顺便把删除的时候弹出js中的confirm对话框也写 ...

  9. 第22章 项目3:万能的XML

    Mix-in:混入类,是一种Python程序设计中的技术,作用是在运行期间动态改变类的基类或类的方法,从而使得类的表现可以发生变化.可以用在一个通用类接口中. 在实践一个解析XML文件的实践中,体会动 ...

  10. Python开发【第一篇】Python基础之正则表达式补充

    正则表达式 一简介:就其本质而言,正则表达式(或RE)是一种小型的.高度专业化的标称语言,(在Python中)它内嵌在Python中,并通过re模块实现.正则表达式模式被编译成一系列的字节码,然后由用 ...