定义:设G=(V,E)是一个无向连通图。如果G的生成子图T=(V,E’)是一棵树,则称T是G的一棵生成树(Spanning Tree)。

  应用生成树可以得到关于一个电网的一组独立的回路方程。第一步是要得到这个电网的一棵生成树。设B是那些不在生成树中的电网的边的集合,从B中取出一条边添加到这生成树上就生成一个环。从B中取出不同的边就生成不同的环。把克希霍夫(Kirchoff)第二定律用到每一个环上,就得到一个回路方程。用这种方法所得到的环是独立的(即这些环中没有一个可以用那些剩下的环的线性组合来得到),这是因为每一个环包含一条从B中取来的边(生成树固定的情况下),而这条边不包含在任何其它的环中。因此,这样所得的这组回路方程也是独立的。可以证明,通过一次取B中的一条边放进所产生的生成树中而得到的这些环组成一个环基,从而这图中所有其它的环都能够用这个基中的这些环的线性组合构造出来。

  生成树在其它方面也有广泛的应用。一种重要的应用是由生成树的性质所产生的,这一性质是,生成树是G的这样一个最小子图T,它使得V(T)=V(G)且T
连通并具有最少的边数。任何一个具有n个结点的连通图都必须至少有n-1条边,而所有具有n-1条边的n结点连通图都是树。如果G的结点代表城市,边代表连接两个城市的可能的交通线,则连接这n个城市所需要的最少交通线是n-l条。G的那些生成树代表所有可行的选择。

下面举个例子具体说明:

Prim最小生成树算法
line void Prim(edge[],COST[][],int n,&T[][],int minCOST) {

//edge()是G的边集。COST(n,n)是n结点图G的成本邻接矩阵,矩阵元素COST(i,j)是一个正实数,如果不存在边(i,j),则为+∞。计算一棵最小生成树并把它作为一个集合存放到数组T(1..n-1,2)中。(T(i,1),T(i,2))是最小成本生成树的一条边。最小成本生成树的总成本最后赋给minCOST。

 float COST[n,n];float minCOST;
int near[],n,i,j,k,m,T[n-][];
(k,m) = 具有最小成本的边;
minCOST=COST(k,m);
(T(,),T(,)) = (k,m)
for(i=;i=n;++i) {//将near置初值
if(COST(i,m)<COST(i,k)) near[i]=m;
else { near[i]=k;};//if
};//for
near[k]=near[m]= for(i=;i<=n-;++i) { //找T的其余n-2条边
设j是near(j)≠0且COST[j][near[j]]最小的下标
(T(i,),T(i,))=(j,near[j]);
minCOST = minCOST + COST[j][near[j]];
near[j]=;
for(k=;k<=n;++k) { //修改near
if((near[k]!= && COST[k][near[k]])>COST[k][j])
{near[k]=j;
};//if
};//for
};//for
if(minCOST)→∞) { print(‘no spanning tree’)};//if
}//Prim

  函数过程Prim所需要的时间是Θ(n2),其中n是图G的结点数。具体分析如下:第3行花费Θ(e) 时间,其中e=|E|。而第4行花费Θ(1)时间;第6~9行的循环花费Θ(n)时间;第12行和第16~20行的循环要求Θ(n)时间,因此第11~21行的循环的每一次选代要花费Θ(n)时间。所以这个循环的总时间是Θ(n2)。故过程Prim有Θ(n2)的时间复杂度。

  因为最小生成树包含了与每个结点v相关的一条最小成本边,因此还可以把这算法稍许加快一点。为此,假设T是图G=(V,E)的最小成本生成树。设v是T中的任一结点。又设(v,w)是所有v相关的边中具有最小成本的一条边。假定(v,w)不属于E(T),且对于所有的边(v,x)∈E(T),COST(v,w)<COST(v,x)。把(v,w)包含到T中就生成一个唯一的环。这个环必定包括一条边(v,x),x≠w。从E(T) ∪{(v,w)}中去掉边(v,x)就破坏了这个环而且没有使图(v,E(T)∪{(v,w)}-{(v,x)})不连通,因此该图也是一棵生成树。由于COST(v,w)<COST(v,x),所以这棵生成树比T有更小的成本。这与T是G中最小成本生成树相矛盾。故T包含如上所述的那样的最小成本边。

最小生成树------Prim算法的更多相关文章

  1. 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。

    //归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...

  2. 最小生成树Prim算法(邻接矩阵和邻接表)

    最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属 ...

  3. 最小生成树—prim算法

    最小生成树prim算法实现 所谓生成树,就是n个点之间连成n-1条边的图形.而最小生成树,就是权值(两点间直线的值)之和的最小值. 首先,要用二维数组记录点和权值.如上图所示无向图: int map[ ...

  4. Highways POJ-1751 最小生成树 Prim算法

    Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输 ...

  5. SWUST OJ 1075 求最小生成树(Prim算法)

    求最小生成树(Prim算法) 我对提示代码做了简要分析,提示代码大致写了以下几个内容 给了几个基础的工具,邻接表记录图的一个的结构体,记录Prim算法中最近的边的结构体,记录目标边的结构体(始末点,值 ...

  6. 图论算法(五)最小生成树Prim算法

    最小生成树\(Prim\)算法 我们通常求最小生成树有两种常见的算法--\(Prim\)和\(Kruskal\)算法,今天先总结最小生成树概念和比较简单的\(Prim\)算法 Part 1:最小生成树 ...

  7. 最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析

    最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析 最小生成树,老生常谈了,生活中也总会有各种各样的问题,在这里,我来带你一起分析一下这个算法的思路与实现的方式吧~~ 在考研中呢 ...

  8. 最小生成树——prim算法

    prim算法是选取任意一个顶点作为树的一个节点,然后贪心的选取离这棵树最近的点,直到连上所有的点并且不够成环,它的时间复杂度为o(v^2) #include<iostream>#inclu ...

  9. 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind

    最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...

  10. 求最小生成树(Prim算法)(1075)

    Description 求出给定无向带权图的最小生成树.图的定点为字符型,权值为不超过100的整形.在提示中已经给出了部分代码,你只需要完善Prim算法即可. Input 第一行为图的顶点个数n    ...

随机推荐

  1. Zabbix探索:资产信息的妙用

    前一阵子还在考虑CMDB的问题,因此Zabbix中的Inventory,也就是所谓的资产信息,遭到了我的不少鄙视. 这几天在研究告警通知对应责任人的问题,突然想起Zabbix的资产信息中应该有这么一栏 ...

  2. Samung Galaxy III I535 黑砖救活经过

    昨天不小心把手机给搞成黑砖了,如下是昨天发帖求助,结果还没审核过,晕. http://bbs.zhiyoo.com/forum.php?mod=viewthread&tid=9673138&a ...

  3. bzoj 2816: [ZJOI2012]网络(splay)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2816 [题意] 给定一个无向图,满足条件:从一个节点出发的同色边不超过2条,且不存在同 ...

  4. 分享两个模拟get和post方法的工具类,让应用能够与服务器进行数据交互

    很久没有码字了,今天跟大家分享一个模拟get和post方法的工具类,在安卓应用中很多都需要跟服务器进行数据交互,这需要两方面的配合,首先服务器端会给应用提供一些数据交互的接口,可是怎样在应用中去调用呢 ...

  5. lua协程实现简析

    协程,简单来说就是新创建一个协助程序(co = coroutine.create(func)),然后需要手动去启动它(coroutine.resume(co)),在它最终退出之前,它有可能暂停多次返回 ...

  6. HW6.29

    public class Solution { public static void main(String[] args) { int count = 0; int[] card = new int ...

  7. [学姿势]使用AngularJS+CodeIgniter框架经验谈

    这篇文章作为总结总结7月份参与项目时遇到的新东西和问题,包括这两个框架(CodeIgniter.AngularJS)以及两个功能实现.有前端调试显示动态认证,也有用php实现功能模块. 1.添加设备 ...

  8. 各个版本的spring jar包

    http://repo.spring.io/release/org/springframework/spring/ 里面有各个版本的jar包

  9. 解决Visual Studio 2013调试时 Web服务框架中出现了无法识别的错误 问题

    此问题出现过很多次,点帮助,google, baidu 都没解决,后经过摸索解决,记录下来1.查找80port是否有被占用情况,需要查看skype[这东西不知道为什么为占用80], Reporting ...

  10. 使用CSS3和jQuery可伸缩的搜索条

    使用CSS3和jQuery可伸缩的搜索条 helloweba.com 作者:月光光 时间:2013-12-09 21:23 标签: CSS3 jquery 搜索条在我们网站是必不可少的,尤其是在有限的 ...