设 $f$ 在 $\bbR$ 上连续可导, 且 $\dps{f'\sex{\frac{1}{2}}=0}$. 试证: $$\bex \exists\ \xi\in \sex{0,\frac{1}{2}},\st f'(\xi)=2\xi [f(\xi)-f(0)]. \eex$$

[Everyday Mathematics]20150203的更多相关文章

  1. [Everyday Mathematics]20150304

    证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\ ...

  2. [Everyday Mathematics]20150303

    设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f( ...

  3. [Everyday Mathematics]20150302

    $$\bex |p|<\frac{1}{2}\ra \int_0^\infty \sex{\frac{x^p-x^{-p}}{1-x}}^2\rd x =2(1-2p\pi \cot 2p\pi ...

  4. [Everyday Mathematics]20150301

    设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^ ...

  5. [Everyday Mathematics]20150228

    试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty ...

  6. [Everyday Mathematics]20150227

    (Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯 ...

  7. [Everyday Mathematics]20150226

    设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$

  8. [Everyday Mathematics]20150225

    设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\s ...

  9. [Everyday Mathematics]20150224

    设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.

随机推荐

  1. 【设计模式六大原则2】里氏替换原则(Liskov Substitution Principle)

      肯定有不少人跟我刚看到这项原则的时候一样,对这个原则的名字充满疑惑.其实原因就是这项原则最早是在1988年,由麻省理工学院的一位姓里的女士(Barbara Liskov)提出来的. 定义1:如果对 ...

  2. hdu 4418 Time travel 概率DP

    高斯消元求期望!! 将n时间点构成2*(n-1)的环,每一点的期望值为dp[i]=dp[i+1]*p1+dp[i+2]*p2+……+dp[i+m]*pm+1. 这样就可以多个方程,利用高斯消元求解. ...

  3. js中的call、apply

    function qingyezhuA(a0, a1) { this.qingyezhuX = a0 + a1; } var qingyezhuObj1 = { }; qingyezhuA.apply ...

  4. Java学习笔记之:Java的数据类型

    一.介绍 变量就是申请内存来存储值.也就是说,当创建变量的时候,需要在内存中申请空间. 内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据. Java语言提供了八种基本类型 ...

  5. 致诸位新程序员:来自Chuck Jazdzewski慈父般的忠告

    记住这几句话,学无止境.(Never stop learning.)沟通至关重要.(Communication is critical.)履行承诺,胜过交付.(Under promise, over ...

  6. 59. Spiral Matrix II

    题目: Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. ...

  7. Splunk常用命令

    重启/查看状态/停止splunk [root@localhost splunk]# /opt/splunk/bin/splunk restart / status / stop

  8. ZOJ 3349 Special Subsequence 简单DP + 线段树

    同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...

  9. SVN update: 'skipped' message

    在eclipse中用svn插件同步google code老是服务器连接time out!就只有通过检出项目再更新啦,结果遇到个SVN update: 'skipped' message问题,还是sta ...

  10. Regex Tester 安装教程

    下载com.brosinski.eclipse.regex_1.4.0.jar 地址:https://github.com/sbrosinski/RegexTester 下载之后把jar包粘贴到${e ...