Til the Cows Come Home

题目链接:

http://acm.hust.edu.cn/vjudge/contest/66569#problem/A

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

  • Line 1: Two integers: T and N

  • Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

  • Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5

1 2 20

2 3 30

3 4 20

4 5 20

1 5 100

Sample Input

5 5

1 2 20

2 3 30

3 4 20

4 5 20

1 5 100

题意:

n个点m条边的无向图,求1到n的最短路径.

题解:

裸的最短路题;

以下用朴素dijkstra和优先队列优化的dijkstra两种方法分别实现;

注意:

采用邻接数组来存储图时,必须判断重边(朴素法);

代码:

朴素dijkstra方法:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define mid(a,b) ((a+b)>>1)
#define LL long long
#define maxn 1010
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std; int n,m;
int value[maxn][maxn];
int dis[maxn];
int pre[maxn];
bool vis[maxn]; void dijkstra(int s) {
memset(vis, 0, sizeof(vis));
memset(pre, -1, sizeof(pre));
for(int i=1; i<=n; i++) dis[i] = inf;
dis[s] = 0; for(int i=1; i<=n; i++) {
int p, mindis = inf;
for(int j=1; j<=n; j++) {
if(!vis[j] && dis[j]<mindis)
mindis = dis[p=j];
}
vis[p] = 1;
for(int j=1; j<=n; j++) {
//if(dis[p]+value[p][j] < dis[j]) dis[j] = dis[p] + value[p][j];
if(dis[j] > dis[p]+value[p][j]) {
dis[j] = dis[p] + value[p][j];
pre[j] = p;
}
}
}
} int main(int argc, char const *argv[])
{
//IN; while(scanf("%d %d", &m,&n) != EOF)
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
value[i][j] = inf;
while(m--){
int u,v,w; cin>>u>>v>>w;
if(w < value[u][v]) value[u][v] = value[v][u] = w;
} dijkstra(1); printf("%d\n", dis[n]);
} return 0;
}

优先队列优化的dijkstra方法:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define mid(a,b) ((a+b)>>1)
#define LL long long
#define maxn 5010
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std; int n, m;
typedef pair<int,int> pii;
priority_queue<pii,vector<pii>,greater<pii> > q;
bool vis[maxn];
int edges, u[maxn], v[maxn], w[maxn];
int first[maxn], next[maxn];
int dis[maxn];
int pre[maxn]; void add_edge(int s, int t, int val) {
u[edges] = s; v[edges] = t; w[edges] = val;
next[edges] = first[s];
first[s] = edges++;
} void dijkstra(int s) {
memset(pre, -1, sizeof(pre));
memset(vis, 0, sizeof(vis));
for(int i=1; i<=n; i++) dis[i]=inf; dis[s] = 0;
while(!q.empty()) q.pop();
q.push(make_pair(dis[s], s)); while(!q.empty()) {
pii cur = q.top(); q.pop();
int p = cur.second;
if(vis[p]) continue; vis[p] = 1;
for(int e=first[p]; e!=-1; e=next[e]) if(dis[v[e]] > dis[p]+w[e]){
dis[v[e]] = dis[p] + w[e];
q.push(make_pair(dis[v[e]], v[e]));
pre[v[e]] = p;
}
}
} int main(int argc, char const *argv[])
{
//IN; while(scanf("%d %d", &m,&n) != EOF)
{
edges = 1;
memset(first, -1, sizeof(first)); for(int i=1; i<=m; i++){
int u,v,w; scanf("%d %d %d", &u,&v,&w);
add_edge(u, v, w);
add_edge(v, u, w);
} dijkstra(1); printf("%d\n", dis[n]);
// int cur = n;
// while(1) {
// printf("%d ", cur);
// if(cur == 1) break;
// cur = pre[cur];
// }
} return 0;
}

POJ 2387 Til the Cows Come Home (最短路 dijkstra)的更多相关文章

  1. POJ 2387 Til the Cows Come Home(模板——Dijkstra算法)

    题目连接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  2. POJ 2387 Til the Cows Come Home(最短路模板)

    题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...

  3. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

  4. POJ 2387 Til the Cows Come Home (图论,最短路径)

    POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...

  5. POJ.2387 Til the Cows Come Home (SPFA)

    POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...

  6. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  7. POJ 2387 Til the Cows Come Home

    题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K ...

  8. POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)

    传送门 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46727   Acce ...

  9. 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33015   Accepted ...

随机推荐

  1. cdev_init函数

    linux-2.6.22/include/linux/cdev.hstruct cdev {   struct kobject kobj;          // 每个 cdev 都是一个 kobje ...

  2. RecyclerView(4)简单示例

    1,RecyclerViewFrgmt import com.example.adapter.R; import android.app.Fragment; import android.os.Bun ...

  3. Sublime Text汉化方法和注册码

    汉化方法 安装 SublimeText3 汉化包运行SublimeText3 点击 Preferneces -> Browse Packages 会打开 X:\..\Sublime Text 3 ...

  4. hdu 4941 Magical Forest ( 双重map )

    题目链接 题意: 有一个n*m的田地,里边有k棵树,每棵树的位置为(xi,yi),含有能量值ci.之后又q个询问,分三种; 1)1 a b,将a行和b行交换 2)2 a b,将a列和b列交换 3)3 ...

  5. 函数fsp_get_space_header

    /**********************************************************************//** Gets a pointer to the sp ...

  6. C#4.0新特性(3):变性 Variance(逆变与协变)

    一句话总结:协变让一个粗粒度接口(或委托)可以接收一个更加具体的接口(或委托)作为参数(或返回值):逆变让一个接口(或委托)的参数类型(或返回值)类型更加具体化,也就是参数类型更强,更明确. 通常,协 ...

  7. session服务器Nginx+Tomcat+Memcached集群Session共享

    cookie是怎样工作的? 例如,我们创立了一个名字为login的Cookie来包含访问者的信息,创立Cookie时,服务器端的Header如下面所示,这里假设访问者的注册名是“Michael Jor ...

  8. Android进度加载的Loading效果

    网上看到的一个开源项目的loading效果,效果很赞,记录一下: 开源项目地址如下:https://github.com/RomainPiel/Titanic

  9. 【转】linux : waitpid函数

    原文网址:http://blog.csdn.net/jifengszf/article/details/3067841 [waitpid系统调用]       功能描述: 等待进程改变其状态.所有下面 ...

  10. logback.xml配置

    一:根节点<configuration>包含的属性: scan: 当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true. scanPeriod: 设置监测配置文 ...