Minimax Triangulation
题意:
按顺序给定一些点,把这些点分割为n - 2个三角形,花费为最大三角形面积,求最小花费
分析:
区间dp,dp[i][j]表示完成区间[i,j]最小花费,dp[i][j]=min(dp[i][j],max(dp[i][k],dp[k][j],area(p[i],p[j],p[k]);(area表示三点确定面积),区间要循环考虑(首未相邻)。
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define read freopen("in.txt", "r", stdin)
const ll INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod = ;
struct point{
double x,y;
}p[];
int n;
double dp[][];
double area(point a,point b,point c){
return abs((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y))/2.0;
}
int judge(int a,int b,int c){
for(int i=;i<n;++i){
if(i!=a&&i!=b&&i!=c){
double tmp=area(p[a],p[b],p[i])+area(p[a],p[i],p[c])+area(p[i],p[b],p[c]);
if(abs(tmp-area(p[a],p[b],p[c]))<1e-)
return ;
}
}
return ;
}
void solve(){
double minv=INF;
for(int l=;l<n;++l)
for(int i=;i<n;++i){
int j=(i+l)%n;
dp[i][j]=INF;
for(int k=(i+)%n;k!=j;k=(k+)%n){
if(judge(i,k,j)){
dp[i][j]=min(dp[i][j],max(max(dp[i][k],dp[k][j]),area(p[i],p[k],p[j])));
}
}
if(l==n-)
minv=min(minv,dp[i][j]);
}
printf("%.1lf\n",minv);
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<n;++i)
scanf("%lf%lf",&p[i].x,&p[i].y);
solve();
}
return ;
}
Minimax Triangulation的更多相关文章
- uva 1331 - Minimax Triangulation(dp)
option=com_onlinejudge&Itemid=8&page=show_problem&category=514&problem=4077&mosm ...
- UVA-1331 Minimax Triangulation 区间dp 计算几何 三角剖分 最大三角形最小化
题目链接:https://cn.vjudge.net/problem/UVA-1331 题意 给一个任意多边形,把它分为多个三角形. 求某方案中最大的三角形是各方案中最小的面积的三角形面积. 思路 学 ...
- spoj Minimax Triangulation
题解: dp+计算几何 F[i][j]表示第i-j条边的答案 然后转移一下 代码: #include<bits/stdc++.h> using namespace std; ]; ][]; ...
- UVa 1331 - Minimax Triangulation(区间DP + 计算几何)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA - 1331 Minimax Triangulation (区间dp)(最优三角剖分)
题目链接 把一个多边形剖分成若干个三角形,使得其中最大的三角形面积最小. 比较经典的一道dp问题 设dp[l][r]为把多边形[l,r]剖分成三角形的最大三角形面积中的最小值,则$dp[l][r]=m ...
- uva1331 Minimax Triangulation
题目大意: 按照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值. /* dp[i][j]表示从第i个点到第j个点,划分 ...
- Uva 1331 - Minimax Triangulation(最优三角剖分 区间DP)
题目大意:依照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值. 思路:用区间DP能够非常方便解决,多边形可能是凹边形, ...
- 杭电ACM分类
杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...
- 转载:hdu 题目分类 (侵删)
转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...
随机推荐
- hdu 4187 Alphabet Soup
这题的主要就是找循环节数,这里用找字符串最小覆盖来实现,也就是n-next[n],证明在这http://blog.csdn.net/fjsd155/article/details/6866991 #i ...
- Oracle 10 - 数据库表
Oracle数据库表类型 1.堆表 2.索引组织表 3.索引clustered表 4.散列clustered表 5.有序散列clustered表 6.嵌套表 7.临时表 8.对象表 9.外部表 Ora ...
- 使用ajax()方法加载服务器数据
使用ajax()方法加载服务器数据 使用ajax()方法是最底层.功能最强大的请求服务器数据的方法,它不仅可以获取服务器返回的数据,还能向服务器发送请求并传递数值,它的调用格式如下: jQuery.a ...
- 欧拉工程第57题:Square root convergents
题目链接 Java程序 package projecteuler51to60; import java.math.BigInteger; import java.util.Iterator; impo ...
- C语言命名规则
一.程序风格: 1.严格采用阶梯层次组织程序代码: 各层次缩进的分格采用VC的缺省风格,即每层次缩进为4格,括号位于下一行. 要求相匹配的大括号在同一列,对 ...
- BS架构与CS架构的区别
C/S结构,即Client/Server(客户机/服务器)结构,是大家熟知的软件系统体系结构,通过将任务合理分配到Client端和Server端,降低了系统的通讯开销,可以充分利用两端硬件环境的优势. ...
- JavaScript DOM编程基础精华01(DOM入门,DOM模型和获取页面元素,事件,window对象的方法)
DOM入门 DOM就是Html页面的模型,将每个标签都做为一个对象,JavaScript通过调用DOM中的属性.方法就可以对网页中的文本框.层等元素进行编程控制.比如通过操作文本框的DOM对象,就可以 ...
- 68. Text Justification
题目: Given an array of words and a length L, format the text such that each line has exactly L charac ...
- sdut 2934 人活着系列之平方数 (完全背包变形)
题目链接 分析:完全背包的变形,每一层的d[]数组代表这一层的这个数新加入以后所构成的val的种类. #include <iostream> #include <cstdio> ...
- org.hibernate.HibernateException: Could not parse configuration: /hibernate.cfg.xml
org.hibernate.HibernateException: Could not parse configuration: /hibernate.cfg.xml at org.hibernate ...