http://blogs.msdn.com/b/borisj/archive/2006/09/28/769708.aspx

I apologize for the long delay for this section (although I suppose my average posting frequency is already pretty low), but I was on a much needed vacation. I finished the last chapter with a brief mention of what I would talk about now, which is the native support for interop that C++ provides. In a sense, I hope this is going to appear to be the simplest method even though I will introduce a few new concepts and use C++/CLI, which adds new language constructs to C++ in order to express .NET semantics (e.g. garbage collected types).

As always, let us reprise our original HelloWorld example. I'm going to include it again for sake of making this post depend as little as possible on the previous ones.

// HelloWorld.h

#pragma once

class __declspec(dllexport) HelloWorld

{

public:

HelloWorld();

~HelloWorld();

void SayThis(wchar_t *phrase);

};

// HelloWorld.cpp

void HelloWorld::SayThis(wchar_t *phrase)

{

MessageBox(NULL, phrase, L"Hello World Says", MB_OK);

}

Our goal is to access this type from .NET. As it stands, this piece of code already compiles into a native DLL. The question that stands before us first is what clients will access this code from now on. In other words, are we replacing all existing client code of this DLL with managed code or are we going to maintain some purely native clients. In the first case, we can write our wrapper code directly into the DLL and compile it into a managed assembly (with native code backing it). In the second case, we need to create a second DLL that will be a native client to this one while publishing a managed interface for .NET clients. It is the latter case that we are going to jump into now.

The first thing to do is to create a new CLR project, which we can do with a wizard (look under the Visual C++ > CLR node in the New Project dialog) or simply taking a blank slate and making the project compile with the /clr switch. This switch is the cornerstone of this entire scenario. If you remember the first part in this series, we showed how the C++ compiler is able to generate MSIL and furthermore, it can generate a process image with both a managed and a native section (the only compiler capable of doing so I might add). We have yet to really lay down the bricks for our wrapper so let's make a naïve wrapper for HelloWorld now.

// cppcliwrapper.h

#pragma once

#include "..\interop101\helloworld.h"

namespace cppcliwrapper {

class ManagedHelloWorld

{

private:

HelloWorld hw;

public:

ManagedHelloWorld();

~ManagedHelloWorld();

void SayThis(wchar_t *phrase);

};

}

This piece of code is a native wrapper around our native type using traditional OO encapsulation. Even though this piece of code will compile into MSIL, it does not solve our original problem. Why is that? It's because we're still dealing with a native type. In other words, the ManagedHelloWorld class still obeys the rules of native semantics, namely the fact that it must live on the native heap. Managed languages like C# have no knowledge of the native heap and their new operator only instantiates objects into the CLR's heap. We need to make this wrapper a managed type, which will have the same semantics as a class in C#. Enter C++/CLI. With these additions to the language, we can create two new types of classes: managed value and reference types (the difference is mainly in the way they are implicitly copied). For our wrapper, we simply need to change its declaration from class to ref class. Once we compile the resulting code, we get a pivotal error.

error C4368: cannot define 'hw' as a member of managed 'ManagedHelloWorld': mixed types are not supported

What could this possibly mean? This error is actually directly related to the problem we described just above. In order to be a proper managed reference type that C# and other managed languages can instantiate, we cannot encapsulate native members. Indeed, our wrapper cannot live on the CLR's managed heap as it contains a member that can only live on the native heap. We can resolve this issue by encapsulating a pointer to our native type. Thus we have the following wrapper code.

ref class ManagedHelloWorld

{

private:

HelloWorld *hw;

public:

ManagedHelloWorld();

~ManagedHelloWorld();

void SayThis(wchar_t *phrase);

};

Only three things remain in order to make this wrapper usable. The first is to make it public in accordance with .NET accessibility rules. The second is to change the interface of SayThis such that it uses a managed string. The third is to include the implementation! So here it goes.

// cppcliwrapper.cpp

#include "cppcliwrapper.h"

#include "marshal.h"

using namespace cppcliwrapper;

ManagedHelloWorld::ManagedHelloWorld() : hw(new HelloWorld())

{

}

ManagedHelloWorld::~ManagedHelloWorld()

{

delete hw;

}

void ManagedHelloWorld::SayThis(System::String^ phrase)

{

hw->SayThis(marshal::to<wchar_t*>(phrase));

}

There are two notable elements we have introduced in this final piece code, the managed handle and data marshalling. The handle or "hat" (or "accent circonflexe" even) is part of the C++/CLI language. It represents a pointer to a managed object. Other languages like Java, C# and VB don't use anything like this as they no longer have native semantics. However C++ needs to differentiate between the stack, the native heap and the managed heap and it does so using * and ^. Data marshalling is a huge topic and can eventually become one of the more complex things you have to manage when working with interop. In this example, we need to convert a managed String into a native pointer to wchar_t. In order to do this, a great pattern is to create a library of static template functions, which thus remain stateless and help maintain a certain level of consistency. In this example, we created the following functions:

namespace marshal {

template <typename T>

static T to(System::String^ str)

{

}

template<>

static wchar_t* to(System::String^ str)

{

pin_ptr<const wchar_t> cpwc = PtrToStringChars(str);

int len = str->Length + 1;

wchar_t* pwc = new wchar_t[len];

wcscpy_s(pwc, len, cpwc);

return pwc;

}

}

After this is all said and done, we compile our code into an assembly that 3rd party .NET clients can use as if it were written in C#. So here is our resulting client code, which is eerily similar to the COM example.

using System;

using System.Text;

using cppcliwrapper;

namespace CSharpDirectCaller

{

class Program

{

static void Main(string[] args)

{

ManagedHelloWorld mhw = new ManagedHelloWorld();

mhw.SayThis("I'm a C# application calling native code via C++ interop!");

}

}

}

I have a lot more to say about this, and I promised a performance comparison as well as a 5th part describing doing this in reverse. My next post should not be so long in the making.

Calling C++ code from C# z的更多相关文章

  1. 804. Unique Morse Code Words

    Description International Morse Code defines a standard encoding where each letter is mapped to a se ...

  2. Javascript中的delete

    一.问题的提出 我们先来看看下面几段代码,要注意的是,以下代码不要在浏览器的开发者工具(如FireBug.Chrome Developer tool)中运行,原因后面会说明: 为什么我们可以删除对象的 ...

  3. Object窥探

    /* * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETA ...

  4. Java中hashcode,equals和==

    hashcode方法返回该对象的哈希码值. hashCode()方法可以用来来提高Map里面的搜索效率的,Map会根据不同的hashCode()来放在不同的位置,Map在搜索一个对象的时候先通过has ...

  5. java Object类学习

    /* * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETA ...

  6. (转) Functions

    Functions Functions allow to structure programs in segments of code to perform individual tasks. In ...

  7. Julia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical

    http://julialang.org/ julia | source | downloads | docs | blog | community | teaching | publications ...

  8. The Go Programming Language. Notes.

    Contents Tutorial Hello, World Command-Line Arguments Finding Duplicate Lines A Web Server Loose End ...

  9. 简单读!zookeeper单机模式的启动逻辑

    zk用处如此之多,以至于每个地方都要你理解zk原理! 请按如下操作姿势打开: 1. 打开zk的git仓库地址:https://github.com/apache/zookeeper , 确认过眼神,它 ...

随机推荐

  1. gulp下livereload和webserver实现本地服务器下文件自动刷新

    一.前言 node从v0.10.26升级(为了匹配autoprefixer)到v5.3.0后出现了gulp插件兼容问题,在nodejs下各种新的插件出现问题,需要重新配置.livereload实现ch ...

  2. python之self (转)

    首先明确的是self只有在类的方法中才会有,独立的函数或方法是不必带有self的.self在定义类的方法时是必须有的,虽然在调用时不必传入相应的参数. self名称不是必须的,在python中self ...

  3. Oracle 6 - 锁和闩 - 并发问题和隔离级别

    并发带来的问题 1.脏读dirty read 脏读的问题是transaction读到了没有被提交的数据.例如,T1更新了data1,还没提交,这时T2读取了更新后的data1, 用于计算和更新别的值, ...

  4. mysql小记--基础知识

    一.事务 事务是由一组SQL语句组成的逻辑处理单元. 事务的特征ACID,即原子性.一致性.隔离性和持久性. 原子性(Atomicity)事务作为整体执行,操作要么全部执行.要么全部不执行. 一致性( ...

  5. cojs 香蕉 解题报告

    啦啦啦,今天的考试题 不过原来考试题的n<=10w 由于我有更好的做法,所以我就改成20亿辣 本来先说一说考试题的正解做法的 但是复杂度是O(nlogm),实在是太渣了 所以还是说一说我的做法吧 ...

  6. 深入浅出Mybatis-分页

    http://blog.csdn.net/hupanfeng/article/details/9265341 http://blog.csdn.net/isea533/article/details/ ...

  7. 用 React 编写2048游戏

    1.代码 <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset="U ...

  8. 360云盘、百度云、微云……为什么不出 OS X(Mac 端)应用呢?(用户少,开发成本高)(百度网盘Mac版2016.10.18横空出世)

    已经说的很好了,现有的云盘所谓的 OS X 版只有云同步功能,不过 115 是个例外,不过 115 的现状……不言自明.接下来说点和本题答案无关的,其实在官方客户端流氓 + 限速的大背景下 OS X ...

  9. 转:在MyEclipse+Hibernate

    源地址http://blog.renren.com/share/270733118/5528463779 1.实验环境准备 MyEclipse8.6 Tomcat6.0.20 MySQL5.1 ...

  10. 神经网络第三部分:网络Neural Networks, Part 3: The Network

    NEURAL NETWORKS, PART 3: THE NETWORK We have learned about individual neurons in the previous sectio ...