题面

思路

这题很像bzoj4827礼物

还是一样的思路,我们把$y$倍长,$y[i+k]=y[i]+n$

然后令$f(s,c)$表示从$y$的第$s$个开始匹配,位置偏移量为$c$的答案

可以得到$f(s,c)=\sum_{i=0}{n-1}(x_i-y_{i+s}+c)2=\sum_{i=0}{n-1}(x_i2+y_{i+s}+c^2+2x_ic-2y_{i+s}x-2x_iy_{i+s})$

我们可以把右边这个式子视为关于$c$的二次函数

用$FFT$可以快速得到不同的$s$下,$2x_iy_{i+s}$这一项的值,又因为其他系数都是确定的,所以我们可以用$O(k\log k)$确定不同的s对应的c的函数

然后可以算出来这个函数的最佳取值,再从所有最佳取值中选出最优解即可

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
namespace FFT{
struct complex{
double x,y;
complex(double xx=0,double yy=0){x=xx;y=yy;}
inline complex operator +(complex &b){return complex(x+b.x,y+b.y);}
inline complex operator -(complex &b){return complex(x-b.x,y-b.y);}
inline complex operator *(complex &b){return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
}A[100010],B[100010];
int cnt,lim,r[100010];
const double pi=acos(-1.0);
void fft(complex *a,double type){
int i,j,k,mid;complex x,y,w,wn;
for(i=0;i<lim;i++) if(i<r[i]) swap(a[i],a[r[i]]);
for(mid=1;mid<lim;mid<<=1){
wn=complex(cos(pi/mid),type*sin(pi/mid));
for(j=0;j<lim;j+=(mid<<1)){
w=complex(1,0);
for(k=0;k<mid;k++,w=w*wn){
x=a[j+k];y=a[j+k+mid]*w;
a[j+k]=x+y;
a[j+k+mid]=x-y;
}
}
}
if(type==-1) for(i=0;i<lim;i++) a[i].x=(ll)(a[i].x/lim+0.5);
}
void init(int len){
memset(A,0,sizeof(A));memset(B,0,sizeof(B));
cnt=0;lim=1;
while(lim<=len) lim<<=1,cnt++;
for(int i=0;i<lim;i++) r[i]=((r[i>>1]>>1)|((i&1)<<(cnt-1)));
}
}
void mul(){
using namespace FFT;
fft(A,1);
fft(B,1);
for(int i=0;i<lim;i++) A[i]=A[i]*B[i];
fft(A,-1);
}
double sqr(double x){
return x*x;
}
ll n,k,x[20010],y[20010],pre1[20010],pre2[20010];
int main(){
int T=read();
while(T--){
n=read();k=read();
ll t1=0,t2=0,i,j,ans=1e15,tl,tm; for(i=0;i<k;i++){
x[i]=read();
t1+=(x[i]*x[i]);
t2+=2*x[i];
}
for(i=0;i<k;i++){
y[i]=read();
y[i+k]=y[i]+n;
}
pre1[0]=y[0]*y[0];
pre2[0]=y[0];
for(i=1;i<(k<<1);i++){
pre1[i]=pre1[i-1]+y[i]*y[i];
pre2[i]=pre2[i-1]+y[i];
} FFT::init(k*3);
for(i=0;i<k;i++) FFT::A[i].x=x[k-1-i];
for(i=0;i<(k<<1);i++) FFT::B[i].x=y[i];
mul(); for(i=k-1;i<(k<<1)-1;i++){
j=i-k+1;
tl=t1+pre1[j+k-1]-pre1[j-1];
tm=t2-2*(pre2[j+k-1]-pre2[j-1]);//这里处理的是y的前缀和,以及y的平方的前缀和
ll tmpc=(ll)(-(double)tm/(2.0*(double)k)); ans=min(ans,(ll)(k*sqr(tmpc)+tmpc*tm+tl-2*FFT::A[i].x));//这里需要上下都摸♂索一下
tmpc--;
ans=min(ans,(ll)(k*sqr(tmpc)+tmpc*tm+tl-2*FFT::A[i].x));
tmpc+=2;
ans=min(ans,(ll)(k*sqr(tmpc)+tmpc*tm+tl-2*FFT::A[i].x));
}
printf("%lld\n",ans);
}
}

项链 [FFT]的更多相关文章

  1. [2016北京集训试题15]项链-[FFT]

    Description Solution 设y[i+k]=y[i]+n. 由于我们要最优解,则假如将x[i]和y[σ[i]]连线的话,线是一定不会交叉的. 所以,$ans=\sum (x_{i}-y_ ...

  2. HDU5730 Shell Necklace(DP + CDQ分治 + FFT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5730 Description Perhaps the sea‘s definition of ...

  3. HDU 5730 Shell Necklace cdq分治+FFT

    题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对 ...

  4. #8 //HDU 5730 Shell Necklace(CDQ分治+FFT)

    Description 给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案 题解: dp[i]表示组合成包含i个贝壳的项链的总方案数 转 ...

  5. HDU - 5730 :Shell Necklace(CDQ分治+FFT)

    Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n b ...

  6. 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)

    对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...

  7. BZOJ1878[SDOI2009]HH的项链

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

  8. 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2978  Solved: 1523[Submit][Status][Di ...

  9. 为什么FFT时域补0后,经FFT变换就是频域进行内插?

    应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...

随机推荐

  1. Python 统计不同url svn代码变更数

    #!/bin/bash/python # -*-coding:utf-8-*- #svn统计不同url代码行数变更脚本,过滤空行,不过滤注释. import subprocess,os,sys,tim ...

  2. 泉五培训Day4

    T1 收果子 题目 [题目描述] 有一个果园,有n棵果树依次排成一排,其中已知第 i 棵果树上结了ai个果子.现在要按照果树编号顺序依次收果子,对于一个能装v个果树的果篮,收果子从第1棵果树开始,如果 ...

  3. ofbiz最新版13.07.01环境搭建、安装(linux环境下)

    一.软件必备: 1.jdk1.7 2.mysql5.6 3.安装tomcat 二.安装: 1.安装 JDK1.7 2.安装mysql数据库 3.下载apache-ofbiz-13.07.01.zip ...

  4. ajaxfileupload多文件上传 - 修复只支持单个文件上传的bug

    搜索: jquery ajaxFileUpload AjaxFileUpload同时上传多个文件 原生的AjaxFileUpload插件是不支持多文件上传的,通过修改AjaxFileUpload少量代 ...

  5. python中字符串编码方式小结

    Python2中字符串的类型有两种:str和unicode,其中unicode是统一编码方式,它使得字符跟二进制是一一对应的,因此所有其他编码的encode都从unicode开始,而其他编码方式按照相 ...

  6. 使用shell脚本依据分区信息分批次的下载hive表格数据

    今天的业务场景大概是这样的,我想把hive表格下载到本地文件系统,然后把这个文件传送到另一个服务器上. 但是这个业务场景一个核心问题就是说我本地机器内存有限,hive表格大概是70G,我是不可能全部下 ...

  7. 爬虫之urllib模块

    1. urllib模块介绍 python自带的一个基于爬虫的模块. 作用:可以使用代码模拟浏览器发起请求. 经常使用到的子模块:request,parse. 使用流程: 指定URL. 针对指定的URL ...

  8. C++基础 静态成员

    静态成员是类的所有 对象共有的变量,在编译 阶段就必须分配空间. 需要注意: (1)静态成员变量的定义和使用 class Test{ static int a; }; ; void main() {} ...

  9. ElasticSearch 环境安装

    1)官网安装教程: http://www.elasticsearch.org/guide/reference/setup/installation/   2)简单安装: http://log.medc ...

  10. JVM——参数设置、分析

    原文:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html 不管是YGC还是Full GC,GC过程中都会对导致程序运行中中断 ...