[Algorithm] Median Maintenance algorithm implementation using TypeScript / JavaScript
The median maintenance problem is a common programming challenge presented in software engineering job interviews.
In this lesson we cover an example of how this problem might be presented and what your chain of thought should be to tackle this problem efficiently.
Lets first refresh what is a median
- The median is the middle element in the sorted list
- Given a list of numbers
`
The median is the middle element in the sorted list. Given
13, 23, 11, 16, 15, 10, 26 Sort them
10, 11, 13, 15, 16, 23, 26
↑
Median If we have an even number of elements we average E.g.
10, 11, 13, 15, 16, 23, 26, 32
\ /
15.5
They way we solve the problem is by using two heaps (Low & High) to divide the array into tow parts.
Low | High
Max Heap | Min Heap
Low part is a max heap, high part is a min heap.
`
(n/2 ± 1) smallest items in a low MaxHeap (n/2 ± 1) biggest items in a high MinHeap peek => n/2th smallest peek => n/2th smallest
\ /
MEDIAN!
`
If low part size is equals to high part size, then we get avg value, otherwise, we get from larger size heap.
function MedianMaintaince() {
let lowMaxHeap = new Heap((b, a) => a - b);
let highMinHeap = new Heap((a, b) => a - b); return {
add(value) {
// For the first element, we add to lowMaxHeap by default
if (lowMaxHeap.size() === 0 || value < lowMaxHeap.peek()) {
lowMaxHeap.add(value);
} else {
highMinHeap.add(value);
} /**
* Reblance:
*
* If low.size = 2; high.size = 4, then we move the root of high to the low part
* so that low.size = 3, high.size = 3
*/
let smallerHeap =
lowMaxHeap.size() > highMinHeap.size() ? highMinHeap : lowMaxHeap;
let biggerHeap = smallerHeap === lowMaxHeap ? highMinHeap : lowMaxHeap;
if (biggerHeap.size() - smallerHeap.size() > 1) {
smallerHeap.add(biggerHeap.extractRoot());
} /**
* If low.szie === high.size, extract root for both and calculate the average value
*/
if (lowMaxHeap.size() === highMinHeap.size()) {
return (lowMaxHeap.peek() + highMinHeap.peek()) / 2;
} else {
// get peak value from the bigger size of heap
return lowMaxHeap.size() > highMinHeap.size()
? lowMaxHeap.peek()
: highMinHeap.peek();
}
}
};
} const mm = new MedianMaintaince();
console.log(mm.add(4)); //
console.log(mm.add(2)); //
console.log(mm.add(5)); //
console.log(mm.add(3)); // 3.5
We have heap data structure:
function printArray(ary) {
console.log(JSON.stringify(ary, null, 2));
} function Heap(cmpFn = () => {}) {
let data = [];
return {
data,
// 2n+1
leftInx(index) {
return 2 * index + 1;
},
//2n + 2
rightInx(index) {
return 2 * index + 2;
},
// left: (n - 1) / 2, left index is always odd number
// right: (n - 2) / 2, right index is always even number
parentInx(index) {
return index % 2 === 0 ? (index - 2) / 2 : (index - 1) / 2;
},
add(val) {
this.data.push(val);
this.siftUp(this.data.length - 1);
},
extractRoot() {
if (this.data.length > 0) {
const root = this.data[0];
const last = this.data.pop();
if (this.data.length > 0) {
// move last element to the root
this.data[0] = last;
// move last elemment from top to bottom
this.siftDown(0);
} return root;
}
},
siftUp(index) {
// find parent index
let parentInx = this.parentInx(index);
// compare
while (index > 0 && cmpFn(this.data[index], this.data[parentInx]) < 0) {
//swap parent and current node value
[this.data[index], this.data[parentInx]] = [
this.data[parentInx],
this.data[index]
];
//swap index
index = parentInx;
//move to next parent
parentInx = this.parentInx(index);
}
},
siftDown(index) {
const minIndex = (leftInx, rightInx) => {
if (cmpFn(this.data[leftInx], this.data[rightInx]) <= 0) {
return leftInx;
} else {
return rightInx;
}
};
let min = minIndex(this.leftInx(index), this.rightInx(index));
while (min >= 0 && cmpFn(this.data[index], this.data[min]) > 0) {
[this.data[index], this.data[min]] = [this.data[min], this.data[index]];
index = min;
min = minIndex(this.leftInx(index), this.rightInx(index));
}
},
peek() {
return this.data[0];
},
print() {
printArray(this.data);
},
size() {
return this.data.length;
}
};
}
[Algorithm] Median Maintenance algorithm implementation using TypeScript / JavaScript的更多相关文章
- [Algorithm] Maximum Contiguous Subarray algorithm implementation using TypeScript / JavaScript
Naive solution for this problem would be caluclate all the possible combinations: const numbers = [1 ...
- 一个"Median Maintenance"问题
题目要求: Download the text file here. The goal of this problem is to implement the "Median Mainten ...
- 如何在TypeScript/JavaScript项目里引入MD5校验和
摘要:MD5校验和则是其中一种数学算法,通常是使用工具对文件计算得出的一组32 个字符的十六进制字母和数字. 本文分享自华为云社区<TypeScript/JavaScript项目里如何做MD5校 ...
- 【Java】-NO.13.Algorithm.1.Java Algorithm.1.001-【Java 常用算法手册 】-
1.0.0 Summary Tittle:[Java]-NO.13.Algorithm.1.Java Algorithm.1.001-[Java 常用算法手册 ]- Style:Java Series ...
- Prim's Algorithm & Kruskal's algorithm
1. Problem These two algorithm are all used to find a minimum spanning tree for a weighted undirecte ...
- Method for finding shortest path to destination in traffic network using Dijkstra algorithm or Floyd-warshall algorithm
A method is presented for finding a shortest path from a starting place to a destination place in a ...
- TypeScript & JavaScript
http://www.typescriptlang.org/docs/tutorial.html handbook: Basic Types Variable Declarations Interfa ...
- 正则表达式(TypeScript, JavaScript)
课题 使用正则表达式匹配字符串 使用正则表达式 "\d{3}-(\d{4})-\d{2}" 匹配字符串 "123-4567-89" 返回匹配结果:'" ...
- [Algorithm] Radix Sort Algorithm
For example we have the array like this: [, , , , , ] First step is using Counting sort for last dig ...
随机推荐
- HDU 1054树形DP入门
Strategic Game Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- Linux下的ACL
ACL理论概述 9位的属主/属组/其他人访问控制系统已经得到证明是强大的,足以满足大多数管理方面的需求. 事实上,在所有非UNIX操作系统上都采用了一种实质上更为复杂的方式来管理对于文件的访问:访问控 ...
- ubuntu 解压
.tar 解包:tar xvf FileName.tar 打包:tar cvf FileName.tar DirName (注:tar是打包,不是压缩!) ---------------------- ...
- 日志组件Log4Net
<?xml version="1.0" encoding="utf-8"?> <configuration> <configSec ...
- 使用QML创建界面(转)
原文转自 https://blog.csdn.net/rl529014/article/details/51378307 在Qt编程中,我们可以使用纯C++代码,或C++和XML结合的方式来创建GUI ...
- 《Linux命令、编辑器与shell编程》第三版 学习笔记---003 使用multibootusb
1.下载文件https://codeload.github.com/mbusb/multibootusb-8.9.0.tar.gz,使用命令: tar xvf multibootusb-8.9.0.t ...
- 去掉VS中的警告错误:warning C4819
当项目引用到外部源代码后,经常出现4819错误,警告信息如下: warning C4819: 该文件包含不能在当前代码页(936)中表示的字符.请将该文件保存为 Unicode 格式以防止数据丢失. ...
- visio画任意形状图形
1,连接线--右击---曲线连接线 2,选中组合 3,开发工具--操作--连接--填充
- spring3.2事物配置异常
异常如下: org.springframework.beans.factory.support.DefaultListableBeanFactory@1b4c1d7: defining beans [ ...
- AC日记——Array Queries codeforces 797e
797E - Array Queries 思路: 分段处理: 当k小于根号n时记忆化搜索: 否则暴力: 来,上代码: #include <cmath> #include <cstdi ...