ThreadPoolExecutor自定义线程池

开篇一张图(图片来自阿里巴巴Java开发手册(详尽版)),后面全靠编

好了要开始编了,从图片中就可以看到这篇博文的主题了,ThreadPoolExecutor自定义线程池。

目录

  1. ThreadPoolExecutor构造函数介绍
  2. 核心线程数corePoolSize
  3. 最大线程数maximumPoolSize
  4. 线程存活时间keepAliveTime
  5. 线程存活时间单位unit
  6. 创建线程的工厂threadFactory
  7. 队列
  8. 拒绝策略
  9. 线程池扩展

ThreadPoolExecutor构造函数介绍

在介绍穿件线程池的方法之前要先介绍一个类ThreadPoolExecutor,因为Executors工厂大部分方法都是返回ThreadPoolExecutor对象,先来看看它的构造函数吧

public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {...}

参数介绍

参数 类型 含义
corePoolSize int 核心线程数
maximumPoolSize int 最大线程数
keepAliveTime long 存活时间
unit TimeUnit 时间单位
workQueue BlockingQueue 存放线程的队列
threadFactory ThreadFactory 创建线程的工厂
handler RejectedExecutionHandler 多余的的线程处理器(拒绝策略)

核心线程数corePoolSize

这个参数表示线程池中的基本线程数量也就是核心线程数量。

最大线程数maximumPoolSize

这个参数是线程池中允许创建的最大线程数量,当使用有界队列时,且队列存放的任务满了,那么线程池会创建新的线程(最大不会超过这个参数所设置的值)。需要注意的是,当使用无界队列时,这个参数是无效的。

线程存活时间keepAliveTime

这个就是线程空闲时可以存活的时间,一旦超过这个时间,线程就会被销毁。

线程存活时间单位unit

线程存活的时间单位,有NANOSECONDS(纳秒)、MICROSECONDS(微秒)、MILLISECONDS(毫秒)、SECONDS(秒)、MINUTES(分钟)、HOURS(小时)、DAYS(天)。TimeUnit代码如下

public enum TimeUnit {
NANOSECONDS {...}, MICROSECONDS {...}, MILLISECONDS {...}, SECONDS {...}, MINUTES {...}, HOURS {...}, DAYS {...};
}

创建线程的工厂threadFactory

创建线程的工厂,一般都是采用Executors.defaultThreadFactory()方法返回的DefaultThreadFactory,当然也可以用其他的来设置更有意义的名称。

DefaultThreadFactory类如下

/**
* The default thread factory
*/
static class DefaultThreadFactory implements ThreadFactory {
private static final AtomicInteger poolNumber = new AtomicInteger(1);
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix; DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
} public Thread newThread(Runnable r) {
Thread t = new Thread(group, r,
namePrefix + threadNumber.getAndIncrement(),
0);
if (t.isDaemon())
t.setDaemon(false);
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
}

队列

分为有界队列和无界队列,用于存放等待执行的任务的阻塞队列。有SynchronousQueue、ArrayBlockingQueue、LinkedBlockingQueue、DelayQueue、PriorityBlockingQueue、LinkedTransferQueue、DelayedWorkQueue、LinkedBlockingDeque。下面将介绍有界和无界两种常用的队列。BlockingQueue类图如下

有界队列

当使用有界队列时,如果有新的任务需要添加进来时,如果线程池实际线程数小于corePoolSize(核心线程数),则优先创建线程,如果线程池实际线程数大于corePoolSize(核心线程数),则会将任务加入队列,若队列已满,则在中现场数不大于maximumPoolSize(最大线程数)的前提下,创建新的线程,若线程数大于maximumPoolSize(最大线程数),则执行拒绝策略。

无界队列

当使用无界队列时,maximumPoolSize(最大线程数)和拒绝策略便会失效,因为队列是没有限制的,所以就不存在队列满的情况。和有界队列相比,当有新的任务添加进来时,都会进入队列等待。但是这也会出现一些问题,例如线程的执行速度比任务提交速度慢,会导致无界队列快速增长,直到系统资源耗尽。

拒绝策略

当使用有界队列时,且队列任务被填满后,线程数也达到最大值时,拒绝策略开始发挥作用。ThreadPoolExecutor默认使用AbortPolicy拒绝策略。RejectedExecutionHandler类图如下

我们来看看ThreadPoolExecutor是如何调用RejectedExecutionHandler的,可以直接查看execute方法

public class ThreadPoolExecutor extends AbstractExecutorService {

    public void execute(Runnable command) {
if (command == null)
throw new NullPointerException(); int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}else if (!addWorker(command, false))
//拒绝线程
reject(command);
}
}

可以看到经过一系列的操作,不符合条件的会调用reject方法,那我么接着来看看reject方法

final void reject(Runnable command) {
handler.rejectedExecution(command, this);
}

可以看到调用了RejectedExecutionHandler接口的rejectedExecution方法。好了,现在来看看jdk提供的几个拒绝策略。

拒绝策略的测试代码在这

注:后续会写一篇ThreadPoolExecutor源码解析,专门介绍ThreadPoolExecutor各个流程

AbortPolicy

从下面代码可以看到直接抛出异常信息,但是线程池还是可以正常工作的。

public static class AbortPolicy implements RejectedExecutionHandler {
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
}

示例代码

线程类

public class Task implements Runnable{

   private int id ;

   public Task(int id){
this.id = id;
} public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
} @Override
public void run() {
//
System.out.println(LocalTime.now()+" 当前线程id和名称为:" + this.id);
try {
Thread.sleep(1000);
} catch (Exception e) {
e.printStackTrace();
}
} public String toString(){
return "当前线程的内容为:{ id : " + this.id + "}";
} }

测试代码

public class TestAbortPolicy {

    public static void main(String[] args) {
//定义了1个核心线程数,最大线程数1个,队列长度2个
ThreadPoolExecutor executor = new ThreadPoolExecutor(
1,
1,
60,
TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(2),
new ThreadPoolExecutor.AbortPolicy()); //直接提交4个线程
executor.submit(new Task(1));
executor.submit(new Task(2));
executor.submit(new Task(3));
//提交第四个抛异常
executor.submit(new Task(4)); }
}

执行结果

当前线程id和名称为:1
Exception in thread "main" java.util.concurrent.RejectedExecutionException: Task java.util.concurrent.FutureTask@1540e19d rejected from java.util.concurrent.ThreadPoolExecutor@677327b6[Running, pool size = 1, active threads = 1, queued tasks = 2, completed tasks = 0]
at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2047)
at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:823)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1369)
at java.util.concurrent.AbstractExecutorService.submit(AbstractExecutorService.java:112)
at com.learnConcurrency.executor.customThreadPool.testRejectedExecutionHandler.TestAbortPolicy.main(TestAbortPolicy.java:25)
当前线程id和名称为:2
当前线程id和名称为:3

可以看到添加第四个线程是抛出异常

CallerRunsPolicy

首先判断线程池是否关闭,如果未关闭,则直接执行该线程。关闭则不做任何事情。

public static class CallerRunsPolicy implements RejectedExecutionHandler {
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
r.run();
}
}
}

代码和上面的差不多就不贴了,想要查看的可以到github上查看TestCallerRunsPolicy,执行结果如下

14:58:19.462 当前线程id和名称为:4
14:58:19.462 当前线程id和名称为:1
14:58:20.464 当前线程id和名称为:5
14:58:20.464 当前线程id和名称为:2
14:58:21.464 当前线程id和名称为:3
14:58:22.464 当前线程id和名称为:6

DiscardPolicy

可以看到里面没有任何代码,也就是这个被拒绝的线程任务被丢弃了,不作任何处理。

public static class DiscardPolicy implements RejectedExecutionHandler {
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
}
}

DiscardOldestPolicy

首先判断线程池是否关闭,如果未关闭,丢弃最老的一个请求,尝试再次提交当前任务。 关闭则不做任何事情。

public static class DiscardOldestPolicy implements RejectedExecutionHandler {

    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
}
}
}

代码和上面的差不多就不贴了,想要查看的可以到github上查看TestDiscardOldestPolicy,执行结果如下

15:02:28.484 当前线程id和名称为:1
15:02:29.486 当前线程id和名称为:5
15:02:30.487 当前线程id和名称为:6

可以看到线程2、3、4都被替换了

自定义拒绝策略

实现RejectedExecutionHandle接口即可,如下MyRejected

public class MyRejected implements RejectedExecutionHandler{

   @Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
System.out.println("自定义处理:开始记录日志");
System.out.println(r.toString());
System.out.println("自定义处理:记录日志完成");
} }

测试代码

public class TestCustomeRejectedPolicy {

    public static void main(String[] args) {
//定义了1个核心线程数,最大线程数1个,队列长度2个
ThreadPoolExecutor executor = new ThreadPoolExecutor(
1,
1,
60,
TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(2),
new MyRejected()); executor.execute(new Task(1));
executor.execute(new Task(2));
executor.execute(new Task(3));
executor.execute(new Task(4));
executor.execute(new Task(5));
executor.execute(new Task(6)); executor.shutdown();
}
}

输出结果

自定义处理:开始记录日志
当前线程的内容为:{ id : 4}
自定义处理:记录日志完成
自定义处理:开始记录日志
当前线程的内容为:{ id : 5}
自定义处理:记录日志完成
自定义处理:开始记录日志
当前线程的内容为:{ id : 6}
自定义处理:记录日志完成
15:12:39.267 当前线程id和名称为:1
15:12:40.268 当前线程id和名称为:2
15:12:41.268 当前线程id和名称为:3 Process finished with exit code 0

这里如果有仔细观察的你可能会有所好奇,为什么这里用execute方法而不是用submit?

这时因为用submit方法后,传入的线程会被封装成RunnableFuture,而我写的MyRejected有调用到toString方法,Task类有重写toString方法,但是被封装成RunnableFuture会输入如下内容

自定义处理:开始记录日志
java.util.concurrent.FutureTask@1540e19d
自定义处理:记录日志完成
自定义处理:开始记录日志
java.util.concurrent.FutureTask@677327b6
自定义处理:记录日志完成
自定义处理:开始记录日志
java.util.concurrent.FutureTask@14ae5a5
自定义处理:记录日志完成
15:18:17.262 当前线程id和名称为:1
15:18:18.263 当前线程id和名称为:2
15:18:19.264 当前线程id和名称为:3 Process finished with exit code 0

线程池扩展

ThreadPoolExecutor类中有三个方法是空方法,可以通过继承来重写这三个方法对线程进行监控。通过重写beforeExecute和afterExecute方法,可以添加日志、计时、监控等等功能。terminated方法是在线程关闭时调用的,可以在这里面进行通知、日志等操作。

//任务执行前
protected void beforeExecute(Thread t, Runnable r) { }
//任务执行后
protected void afterExecute(Runnable r, Throwable t) { }
//线程池关闭
protected void terminated() { }

示例代码

public class Main {

    public static void main(String[] args) {
ThreadPoolExecutor pool = new MyThreadPoolExecutor(
2, //coreSize
4, //MaxSize
60, //60
TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(4)); for (int i = 0; i < 8; i++) {
int finalI = i + 1;
pool.submit(() -> {
try {
Thread.sleep(new Random().nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
});
} pool.shutdown();
} static class MyThreadPoolExecutor extends ThreadPoolExecutor{
private final AtomicInteger tastNum = new AtomicInteger();
private final ThreadLocal<Long> startTime = new ThreadLocal<>(); public MyThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
} @Override
protected void beforeExecute(Thread t, Runnable r) {
super.beforeExecute(t, r);
startTime.set(System.nanoTime());
System.out.println(LocalTime.now()+" 执行之前-任务:"+r.toString());
} @Override
protected void afterExecute(Runnable r, Throwable t) {
long endTime = System.nanoTime();
long time = endTime - startTime.get();
tastNum.incrementAndGet();
System.out.println(LocalTime.now()+" 执行之后-任务:"+r.toString()+",花费时间(纳秒):"+time);
super.afterExecute(r, t);
} @Override
protected void terminated() {
System.out.println("线程关闭,总共执行线程数:"+tastNum.get());
super.terminated();
}
} }

执行结果

15:43:23.329 执行之前-任务:java.util.concurrent.FutureTask@469dad33
15:43:23.329 执行之前-任务:java.util.concurrent.FutureTask@1446b68c
15:43:23.329 执行之前-任务:java.util.concurrent.FutureTask@5eefc31e
15:43:23.329 执行之前-任务:java.util.concurrent.FutureTask@33606b2
15:43:23.513 执行之后-任务:java.util.concurrent.FutureTask@33606b2,花费时间(纳秒):216399556
15:43:23.513 执行之前-任务:java.util.concurrent.FutureTask@236e71ad
15:43:23.601 执行之后-任务:java.util.concurrent.FutureTask@1446b68c,花费时间(纳秒):304505594
15:43:23.601 执行之前-任务:java.util.concurrent.FutureTask@107920dc
15:43:23.733 执行之后-任务:java.util.concurrent.FutureTask@5eefc31e,花费时间(纳秒):436283680
15:43:23.733 执行之前-任务:java.util.concurrent.FutureTask@502826b3
15:43:23.808 执行之后-任务:java.util.concurrent.FutureTask@469dad33,花费时间(纳秒):512242583
15:43:23.808 执行之前-任务:java.util.concurrent.FutureTask@96741ab
15:43:23.924 执行之后-任务:java.util.concurrent.FutureTask@107920dc,花费时间(纳秒):322900976
15:43:24.059 执行之后-任务:java.util.concurrent.FutureTask@236e71ad,花费时间(纳秒):546324680
15:43:24.498 执行之后-任务:java.util.concurrent.FutureTask@502826b3,花费时间(纳秒):765309335
15:43:24.594 执行之后-任务:java.util.concurrent.FutureTask@96741ab,花费时间(纳秒):785868205
线程关闭,总共执行线程数:8

代码位置

GitHub地址

地址在这

觉得不错的点个star

参考资料

[1] Java 并发编程的艺术

[2] Java 并发编程实战

java多线程系列:ThreadPoolExecutor的更多相关文章

  1. Java多线程系列--“JUC线程池”01之 线程池架构

    概要 前面分别介绍了"Java多线程基础"."JUC原子类"和"JUC锁".本章介绍JUC的最后一部分的内容——线程池.内容包括:线程池架构 ...

  2. Java多线程系列--“JUC线程池”02之 线程池原理(一)

    概要 在上一章"Java多线程系列--“JUC线程池”01之 线程池架构"中,我们了解了线程池的架构.线程池的实现类是ThreadPoolExecutor类.本章,我们通过分析Th ...

  3. Java多线程系列--“JUC线程池”03之 线程池原理(二)

    概要 在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代 ...

  4. Java多线程系列--“JUC线程池”04之 线程池原理(三)

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509960.html 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基 ...

  5. Java多线程系列--“JUC线程池”05之 线程池原理(四)

    概要 本章介绍线程池的拒绝策略.内容包括:拒绝策略介绍拒绝策略对比和示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3512947.html 拒绝策略 ...

  6. java多线程系列(六)---线程池原理及其使用

    线程池 前言:如有不正确的地方,还望指正. 目录 认识cpu.核心与线程 java多线程系列(一)之java多线程技能 java多线程系列(二)之对象变量的并发访问 java多线程系列(三)之等待通知 ...

  7. java多线程系列(七)---Callable、Future和FutureTask

    Callable.Future和FutureTask 前言:如有不正确的地方,还望指正. 目录 认识cpu.核心与线程 java多线程系列(一)之java多线程技能 java多线程系列(二)之对象变量 ...

  8. Java多线程系列——从菜鸟到入门

    持续更新系列. 参考自Java多线程系列目录(共43篇).<Java并发编程实战>.<实战Java高并发程序设计>.<Java并发编程的艺术>. 基础 Java多线 ...

  9. Java多线程系列--“JUC锁”03之 公平锁(一)

    概要 本章对“公平锁”的获取锁机制进行介绍(本文的公平锁指的是互斥锁的公平锁),内容包括:基本概念ReentrantLock数据结构参考代码获取公平锁(基于JDK1.7.0_40)一. tryAcqu ...

  10. Java多线程系列--“JUC锁”04之 公平锁(二)

    概要 前面一章,我们学习了“公平锁”获取锁的详细流程:这里,我们再来看看“公平锁”释放锁的过程.内容包括:参考代码释放公平锁(基于JDK1.7.0_40) “公平锁”的获取过程请参考“Java多线程系 ...

随机推荐

  1. Luogu P1377 [TJOI2011]树的序:离线nlogn建二叉搜索树

    题目链接:https://www.luogu.org/problemnew/show/P1377 题意: 有一棵n个节点的二叉搜索树. 给出它的插入序列,是一个1到n的排列. 问你使得树的形态相同的字 ...

  2. PHP中有多态么

    PHP中有多态么 一.总结 一句话总结:封装是类的构建过程,php具有:php也具有继承的特性.唯独这个多态,php体现的十分模糊.原因是php是弱类型语言. php不具有像java那种清晰的多态,不 ...

  3. 图解Skip List——本质是空间换时间的数据结构,在lucene的倒排列表,bigtable,hbase,cassandra的memtable,redis中sorted set中均用到

    Skip List的提出已有二十多年[Pugh, W. (1990)],却依旧应用广泛(Redis.LevelDB等).作为平衡树(AVL.红黑树.伸展树.树堆)的替代方案,虽然它性能不如平衡树稳定, ...

  4. windows 批处理ping ip

    //pingSingleIp ;;@Echo off @for /f "tokens=1-4 delims=." %%i in (ip.txt) do (@ping -w 600 ...

  5. python实现Deque

    1 Deque定义 deque(也称为双端队列)是与队列类似的项的有序集合.它有两个端部,首部和尾部,并且项在集合中保持不变.deque 不同的地方是添加和删除项是非限制性的.可以在前面或后面添加新项 ...

  6. 如何在MySQl数据库中给已有的数据表添加自增ID?

    由于使用MySQL数据库还没有多久的缘故,在搭建后台往数据库导入数据的时候发现新增的表单是没有自增id的,因次就有了上面这个问题. 解决方法 1.给某一张表先增加一个字段,这里我们就以node_tab ...

  7. freeMarker(十)——模板语言之内建函数

    学习笔记,选自freeMarker中文文档,译自 Email: ddekany at users.sourceforge.net 1.字符串内建函数 这些内建函数作用于表达式左侧的字符串值. 如果左侧 ...

  8. P2P流媒体开源项目介绍

    P2P流媒体开源项目介绍1. PeerCast 2002年成立,最早的开源P2P流媒体项目.PeerCast把节点按树结构组织起来, 每个频道都是一个树, 直播源是根节点,父节点只给子节点提供数据.节 ...

  9. 图的Tarjan算法

    “Tarjan有三种算法 你们知道吗”——Tar乙己 void tarjan(int x) { low[x]=dfn[x]=++ind; q[++top]=x;mark[x]=; for(int i= ...

  10. bzoj 1441: Min 裴蜀定理

    题目: 给出\(n\)个数\((A_1, ... ,A_n)\)现求一组整数序列\((X_1, ... X_n)\)使得\(S=A_1*X_1+ ...+ A_n*X_n > 0\),且\(S\ ...