Linux之epoll详细解析实现
/*
* fs/eventpoll.c (Efficient event retrieval implementation)
* Copyright (C) 2001,...,2009 Davide Libenzi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Davide Libenzi <davidel@xmailserver.org>
*
*/
/*
* 在深入了解epoll的实现之前, 先来了解内核的3个方面.
* 1. 等待队列 waitqueue
* 我们简单解释一下等待队列:
* 队列头(wait_queue_head_t)往往是资源生产者,
* 队列成员(wait_queue_t)往往是资源消费者,
* 当头的资源ready后, 会逐个执行每个成员指定的回调函数,
* 来通知它们资源已经ready了, 等待队列大致就这个意思.
* 2. 内核的poll机制
* 被Poll的fd, 必须在实现上支持内核的Poll技术,
* 比如fd是某个字符设备,或者是个socket, 它必须实现
* file_operations中的poll操作, 给自己分配有一个等待队列头.
* 主动poll fd的某个进程必须分配一个等待队列成员, 添加到
* fd的对待队列里面去, 并指定资源ready时的回调函数.
* 用socket做例子, 它必须有实现一个poll操作, 这个Poll是
* 发起轮询的代码必须主动调用的, 该函数中必须调用poll_wait(),
* poll_wait会将发起者作为等待队列成员加入到socket的等待队列中去.
* 这样socket发生状态变化时可以通过队列头逐个通知所有关心它的进程.
* 这一点必须很清楚的理解, 否则会想不明白epoll是如何
* 得知fd的状态发生变化的.
* 3. epollfd本身也是个fd, 所以它本身也可以被epoll,
* 可以猜测一下它是不是可以无限嵌套epoll下去...
*
* epoll基本上就是使用了上面的1,2点来完成.
* 可见epoll本身并没有给内核引入什么特别复杂或者高深的技术,
* 只不过是已有功能的重新组合, 达到了超过select的效果.
*/
/*
* 相关的其它内核知识:
* 1. fd我们知道是文件描述符, 在内核态, 与之对应的是struct file结构,
* 可以看作是内核态的文件描述符.
* 2. spinlock, 自旋锁, 必须要非常小心使用的锁,
* 尤其是调用spin_lock_irqsave()的时候, 中断关闭, 不会发生进程调度,
* 被保护的资源其它CPU也无法访问. 这个锁是很强力的, 所以只能锁一些
* 非常轻量级的操作.
* 3. 引用计数在内核中是非常重要的概念,
* 内核代码里面经常有些release, free释放资源的函数几乎不加任何锁,
* 这是因为这些函数往往是在对象的引用计数变成0时被调用,
* 既然没有进程在使用在这些对象, 自然也不需要加锁.
* struct file 是持有引用计数的.
*/
/* --- epoll相关的数据结构 --- */
/*
* This structure is stored inside the "private_data" member of the file
* structure and rapresent the main data sructure for the eventpoll
* interface.
*/
/* 每创建一个epollfd, 内核就会分配一个eventpoll与之对应, 可以说是
* 内核态的epollfd. */
struct eventpoll {
/* Protect the this structure access */
spinlock_t lock;
/*
* This mutex is used to ensure that files are not removed
* while epoll is using them. This is held during the event
* collection loop, the file cleanup path, the epoll file exit
* code and the ctl operations.
*/
/* 添加, 修改或者删除监听fd的时候, 以及epoll_wait返回, 向用户空间
* 传递数据时都会持有这个互斥锁, 所以在用户空间可以放心的在多个线程
* 中同时执行epoll相关的操作, 内核级已经做了保护. */
struct mutex mtx;
/* Wait queue used by sys_epoll_wait() */
/* 调用epoll_wait()时, 我们就是"睡"在了这个等待队列上... */
wait_queue_head_t wq;
/* Wait queue used by file->poll() */
/* 这个用于epollfd本事被poll的时候... */
wait_queue_head_t poll_wait;
/* List of ready file descriptors */
/* 所有已经ready的epitem都在这个链表里面 */
struct list_head rdllist;
/* RB tree root used to store monitored fd structs */
/* 所有要监听的epitem都在这里 */
struct rb_root rbr;
/*
这是一个单链表链接着所有的struct epitem当event转移到用户空间时
*/
* This is a single linked list that chains all the "struct epitem" that
* happened while transfering ready events to userspace w/out
* holding ->lock.
*/
struct epitem *ovflist;
/* The user that created the eventpoll descriptor */
/* 这里保存了一些用户变量, 比如fd监听数量的最大值等等 */
struct user_struct *user;
};
/*
* Each file descriptor added to the eventpoll interface will
* have an entry of this type linked to the "rbr" RB tree.
*/
/* epitem 表示一个被监听的fd */
struct epitem {
/* RB tree node used to link this structure to the eventpoll RB tree */
/* rb_node, 当使用epoll_ctl()将一批fds加入到某个epollfd时, 内核会分配
* 一批的epitem与fds们对应, 而且它们以rb_tree的形式组织起来, tree的root
* 保存在epollfd, 也就是struct eventpoll中.
* 在这里使用rb_tree的原因我认为是提高查找,插入以及删除的速度.
* rb_tree对以上3个操作都具有O(lgN)的时间复杂度 */
struct rb_node rbn;
/* List header used to link this structure to the eventpoll ready list */
/* 链表节点, 所有已经ready的epitem都会被链到eventpoll的rdllist中 */
struct list_head rdllink;
/*
* Works together "struct eventpoll"->ovflist in keeping the
* single linked chain of items.
*/
/* 这个在代码中再解释... */
struct epitem *next;
/* The file descriptor information this item refers to */
/* epitem对应的fd和struct file */
struct epoll_filefd ffd;
/* Number of active wait queue attached to poll operations */
int nwait;
/* List containing poll wait queues */
struct list_head pwqlist;
/* The "container" of this item */
/* 当前epitem属于哪个eventpoll */
struct eventpoll *ep;
/* List header used to link this item to the "struct file" items list */
struct list_head fllink;
/* The structure that describe the interested events and the source fd */
/* 当前的epitem关系哪些events, 这个数据是调用epoll_ctl时从用户态传递过来 */
struct epoll_event event;
};
struct epoll_filefd {
struct file *file;
int fd;
};
/* poll所用到的钩子Wait structure used by the poll hooks */
struct eppoll_entry {
/* List header used to link this structure to the "struct epitem" */
struct list_head llink;
/* The "base" pointer is set to the container "struct epitem" */
struct epitem *base;
/*
* Wait queue item that will be linked to the target file wait
* queue head.
*/
wait_queue_t wait;
/* The wait queue head that linked the "wait" wait queue item */
wait_queue_head_t *whead;
};
/* Wrapper struct used by poll queueing */
struct ep_pqueue {
poll_table pt;
struct epitem *epi;
};
/* Used by the ep_send_events() function as callback private data */
struct ep_send_events_data {
int maxevents;
struct epoll_event __user *events;
}; /* --- 代码注释 --- */
/* 你没看错, 这就是epoll_create()的真身, 基本啥也不干直接调用epoll_create1了,
* 另外你也可以发现, size这个参数其实是没有任何用处的... */
SYSCALL_DEFINE1(epoll_create, int, size)
{
if (size <= 0)
return -EINVAL;
return sys_epoll_create1(0);
}
/* 这才是真正的epoll_create啊~~ */
SYSCALL_DEFINE1(epoll_create1, int, flags)
{
int error;
struct eventpoll *ep = NULL;//主描述符
/* Check the EPOLL_* constant for consistency. */
/* 这句没啥用处... */
BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
/* 对于epoll来讲, 目前唯一有效的FLAG就是CLOEXEC */
if (flags & ~EPOLL_CLOEXEC)
return -EINVAL;
/*
* Create the internal data structure ("struct eventpoll").
*/
/* 分配一个struct eventpoll, 分配和初始化细节我们随后深聊~ */
error = ep_alloc(&ep);
if (error < 0)
return error;
/*
* Creates all the items needed to setup an eventpoll file. That is,
* a file structure and a free file descriptor.
*/
/* 这里是创建一个匿名fd, 说起来就话长了...长话短说:
* epollfd本身并不存在一个真正的文件与之对应, 所以内核需要创建一个
* "虚拟"的文件, 并为之分配真正的struct file结构, 而且有真正的fd.
* 这里2个参数比较关键:
* eventpoll_fops, fops就是file operations, 就是当你对这个文件(这里是虚拟的)进行操作(比如读)时,
* fops里面的函数指针指向真正的操作实现, 类似C++里面虚函数和子类的概念.
* epoll只实现了poll和release(就是close)操作, 其它文件系统操作都有VFS全权处理了.
* ep, ep就是struct epollevent, 它会作为一个私有数据保存在struct file的private指针里面.
* 其实说白了, 就是为了能通过fd找到struct file, 通过struct file能找到eventpoll结构.
* 如果懂一点Linux下字符设备驱动开发, 这里应该是很好理解的,
* 推荐阅读 <Linux device driver 3rd>
*/
error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
O_RDWR | (flags & O_CLOEXEC));
if (error < 0)
ep_free(ep);
return error;
}
/*
* 创建好epollfd后, 接下来我们要往里面添加fd咯
* 来看epoll_ctl
* epfd 就是epollfd
* op ADD,MOD,DEL
* fd 需要监听的描述符
* event 我们关心的events
*/
SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
struct epoll_event __user *, event)
{
int error;
struct file *file, *tfile;
struct eventpoll *ep;
struct epitem *epi;
struct epoll_event epds;
error = -EFAULT;
/*
* 错误处理以及从用户空间将epoll_event结构copy到内核空间.
*/
if (ep_op_has_event(op) &&
copy_from_user(&epds, event, sizeof(struct epoll_event)))
goto error_return;
/* Get the "struct file *" for the eventpoll file */
/* 取得struct file结构, epfd既然是真正的fd, 那么内核空间
* 就会有与之对于的一个struct file结构
* 这个结构在epoll_create1()中, 由函数anon_inode_getfd()分配 */
error = -EBADF;
file = fget(epfd);
if (!file)
goto error_return;
/* Get the "struct file *" for the target file */
/* 我们需要监听的fd, 它当然也有个struct file结构, 上下2个不要搞混了哦 */
tfile = fget(fd);
if (!tfile)
goto error_fput;
/* The target file descriptor must support poll */
error = -EPERM;
/* 如果监听的文件不支持poll, 那就没辙了.
* 你知道什么情况下, 文件会不支持poll吗?
*/
if (!tfile->f_op || !tfile->f_op->poll)
goto error_tgt_fput;
/*
* We have to check that the file structure underneath the file descriptor
* the user passed to us _is_ an eventpoll file. And also we do not permit
* adding an epoll file descriptor inside itself.
*/
error = -EINVAL;
/* epoll不能自己监听自己... */
if (file == tfile || !is_file_epoll(file))
goto error_tgt_fput;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
/* 取到我们的eventpoll结构, 来自与epoll_create1()中的分配 */
ep = file->private_data;
/* 接下来的操作有可能修改数据结构内容, 锁之~ */
mutex_lock(&ep->mtx);
/*
* Try to lookup the file inside our RB tree, Since we grabbed "mtx"
* above, we can be sure to be able to use the item looked up by
* ep_find() till we release the mutex.
*/
/* 对于每一个监听的fd, 内核都有分配一个epitem结构,
* 而且我们也知道, epoll是不允许重复添加fd的,
* 所以我们首先查找该fd是不是已经存在了.
* ep_find()其实就是RBTREE查找, 跟C++STL的map差不多一回事, O(lgn)的时间复杂度.
*/
epi = ep_find(ep, tfile, fd);
error = -EINVAL;
switch (op) {
/* 首先我们关心添加 */
case EPOLL_CTL_ADD:
if (!epi) {
/* 之前的find没有找到有效的epitem, 证明是第一次插入, 接受!
* 这里我们可以知道, POLLERR和POLLHUP事件内核总是会关心的
* */
epds.events |= POLLERR | POLLHUP;
/* rbtree插入, 详情见ep_insert()的分析
* 其实我觉得这里有insert的话, 之前的find应该
* 是可以省掉的... */
error = ep_insert(ep, &epds, tfile, fd);
} else
/* 找到了!? 重复添加! */
error = -EEXIST;
break;
/* 删除和修改操作都比较简单 */
case EPOLL_CTL_DEL:
if (epi)
error = ep_remove(ep, epi);
else
error = -ENOENT;
break;
case EPOLL_CTL_MOD:
if (epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_modify(ep, epi, &epds);
} else
error = -ENOENT;
break;
}
mutex_unlock(&ep->mtx);
error_tgt_fput:
fput(tfile);
error_fput:
fput(file);
error_return:
return error;
}
/* 分配一个eventpoll结构 */
static int ep_alloc(struct eventpoll **pep)
{
int error;
struct user_struct *user;
struct eventpoll *ep;
/* 获取当前用户的一些信息, 比如是不是root啦, 最大监听fd数目啦 */
user = get_current_user();
error = -ENOMEM;
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (unlikely(!ep))
goto free_uid;
/* 这些都是初始化啦 */
spin_lock_init(&ep->lock);
mutex_init(&ep->mtx);
init_waitqueue_head(&ep->wq);//初始化自己睡在的等待队列
init_waitqueue_head(&ep->poll_wait);//初始化
INIT_LIST_HEAD(&ep->rdllist);//初始化就绪链表
ep->rbr = RB_ROOT;
ep->ovflist = EP_UNACTIVE_PTR;
ep->user = user;
*pep = ep;
return 0;
free_uid:
free_uid(user);
return error;
}
/*
* Must be called with "mtx" held.
*/
/*
* ep_insert()在epoll_ctl()中被调用, 完成往epollfd里面添加一个监听fd的工作
* tfile是fd在内核态的struct file结构
*/
static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
struct file *tfile, int fd)
{
int error, revents, pwake = 0;
unsigned long flags;
struct epitem *epi;
struct ep_pqueue epq;
/* 查看是否达到当前用户的最大监听数 */
if (unlikely(atomic_read(&ep->user->epoll_watches) >=
max_user_watches))
return -ENOSPC;
/* 从著名的slab中分配一个epitem */
if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
return -ENOMEM;
/* Item initialization follow here ... */
/* 这些都是相关成员的初始化... */
INIT_LIST_HEAD(&epi->rdllink);
INIT_LIST_HEAD(&epi->fllink);
INIT_LIST_HEAD(&epi->pwqlist);
epi->ep = ep;
/* 这里保存了我们需要监听的文件fd和它的file结构 */
ep_set_ffd(&epi->ffd, tfile, fd);
epi->event = *event;
epi->nwait = 0;
/* 这个指针的初值不是NULL哦... */
epi->next = EP_UNACTIVE_PTR;
/* Initialize the poll table using the queue callback */
/* 好, 我们终于要进入到poll的正题了 */
epq.epi = epi;
/* 初始化一个poll_table
* 其实就是指定调用poll_wait(注意不是epoll_wait!!!)时的回调函数,和我们关心哪些events,
* ep_ptable_queue_proc()就是我们的回调啦, 初值是所有event都关心 */
init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
/*
* Attach the item to the poll hooks and get current event bits.
* We can safely use the file* here because its usage count has
* been increased by the caller of this function. Note that after
* this operation completes, the poll callback can start hitting
* the new item.
*/
/* 这一部很关键, 也比较难懂, 完全是内核的poll机制导致的...
* 首先, f_op->poll()一般来说只是个wrapper, 它会调用真正的poll实现,
* 拿UDP的socket来举例, 这里就是这样的调用流程: f_op->poll(), sock_poll(),
* udp_poll(), datagram_poll(), sock_poll_wait(), 最后调用到我们上面指定的
* ep_ptable_queue_proc()这个回调函数...(好深的调用路径...).
* 完成这一步, 我们的epitem就跟这个socket关联起来了, 当它有状态变化时,
* 会通过ep_poll_callback()来通知.
* 最后, 这个函数还会查询当前的fd是不是已经有啥event已经ready了, 有的话
* 会将event返回. */
revents = tfile->f_op->poll(tfile, &epq.pt);
/*
* We have to check if something went wrong during the poll wait queue
* install process. Namely an allocation for a wait queue failed due
* high memory pressure.
*/
error = -ENOMEM;
if (epi->nwait < 0)
goto error_unregister;
/* Add the current item to the list of active epoll hook for this file */
/* 这个就是每个文件会将所有监听自己的epitem链起来 */
spin_lock(&tfile->f_lock);
list_add_tail(&epi->fllink, &tfile->f_ep_links);
spin_unlock(&tfile->f_lock);
/*
* Add the current item to the RB tree. All RB tree operations are
* protected by "mtx", and ep_insert() is called with "mtx" held.
*/
/* 都搞定后, 将epitem插入到对应的eventpoll中去 */
ep_rbtree_insert(ep, epi);
/* We have to drop the new item inside our item list to keep track of it */
spin_lock_irqsave(&ep->lock, flags);
/* If the file is already "ready" we drop it inside the ready list */
/* 到达这里后, 如果我们监听的fd已经有事件发生, 那就要处理一下 */
if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
/* 将当前的epitem加入到ready list中去 */
list_add_tail(&epi->rdllink, &ep->rdllist);
/* Notify waiting tasks that events are available */
/* 谁在epoll_wait, 就唤醒它... */
if (waitqueue_active(&ep->wq))
wake_up_locked(&ep->wq);
/* 谁在epoll当前的epollfd, 也唤醒它... */
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
spin_unlock_irqrestore(&ep->lock, flags);
atomic_inc(&ep->user->epoll_watches);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&ep->poll_wait);
return 0;
error_unregister:
ep_unregister_pollwait(ep, epi);
/*
* We need to do this because an event could have been arrived on some
* allocated wait queue. Note that we don't care about the ep->ovflist
* list, since that is used/cleaned only inside a section bound by "mtx".
* And ep_insert() is called with "mtx" held.
*/
spin_lock_irqsave(&ep->lock, flags);
if (ep_is_linked(&epi->rdllink))
list_del_init(&epi->rdllink);
spin_unlock_irqrestore(&ep->lock, flags);
kmem_cache_free(epi_cache, epi);
return error;
}
/*
* This is the callback that is used to add our wait queue to the
* target file wakeup lists.
*/
/*
* 该函数在调用f_op->poll()时会被调用.
* 也就是epoll主动poll某个fd时, 用来将epitem与指定的fd关联起来的.
* 关联的办法就是使用等待队列(waitqueue)
*/
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
poll_table *pt)
{
struct epitem *epi = ep_item_from_epqueue(pt);
struct eppoll_entry *pwq;
if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
/* 初始化等待队列, 指定ep_poll_callback为唤醒时的回调函数,
* 当我们监听的fd发生状态改变时, 也就是队列头被唤醒时,
* 指定的回调函数将会被调用. */
init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
pwq->whead = whead;
pwq->base = epi;
/* 将刚分配的等待队列成员加入到头中, 头是由fd持有的 */
add_wait_queue(whead, &pwq->wait);
list_add_tail(&pwq->llink, &epi->pwqlist);
/* nwait记录了当前epitem加入到了多少个等待队列中,
* 我认为这个值最大也只会是1... */
epi->nwait++;
} else {
/* We have to signal that an error occurred */
epi->nwait = -1;
}
}
/*
* This is the callback that is passed to the wait queue wakeup
* machanism. It is called by the stored file descriptors when they
* have events to report.
*/
/*
* 这个是关键性的回调函数, 当我们监听的fd发生状态改变时, 它会被调用.
* 参数key被当作一个unsigned long整数使用, 携带的是events.
*/
static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
int pwake = 0;
unsigned long flags;
struct epitem *epi = ep_item_from_wait(wait);//从等待队列获取epitem.需要知道哪个进程挂载到这个设备
struct eventpoll *ep = epi->ep;//获取
spin_lock_irqsave(&ep->lock, flags);
/*
* If the event mask does not contain any poll(2) event, we consider the
* descriptor to be disabled. This condition is likely the effect of the
* EPOLLONESHOT bit that disables the descriptor when an event is received,
* until the next EPOLL_CTL_MOD will be issued.
*/
if (!(epi->event.events & ~EP_PRIVATE_BITS))
goto out_unlock;
/*
* Check the events coming with the callback. At this stage, not
* every device reports the events in the "key" parameter of the
* callback. We need to be able to handle both cases here, hence the
* test for "key" != NULL before the event match test.
*/
/* 没有我们关心的event... */
if (key && !((unsigned long) key & epi->event.events))
goto out_unlock;
/*
* If we are trasfering events to userspace, we can hold no locks
* (because we're accessing user memory, and because of linux f_op->poll()
* semantics). All the events that happens during that period of time are
* chained in ep->ovflist and requeued later on.
*/
/*
* 这里看起来可能有点费解, 其实干的事情比较简单:
* 如果该callback被调用的同时, epoll_wait()已经返回了,
* 也就是说, 此刻应用程序有可能已经在循环获取events,
* 这种情况下, 内核将此刻发生event的epitem用一个单独的链表
* 链起来, 不发给应用程序, 也不丢弃, 而是在下一次epoll_wait
* 时返回给用户.
*/
if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
if (epi->next == EP_UNACTIVE_PTR) {
epi->next = ep->ovflist;
ep->ovflist = epi;
}
goto out_unlock;
}
/* If this file is already in the ready list we exit soon */
/* 将当前的epitem放入ready list */
if (!ep_is_linked(&epi->rdllink))
list_add_tail(&epi->rdllink, &ep->rdllist);
/*
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
* wait list.
*/
/* 唤醒epoll_wait... */
if (waitqueue_active(&ep->wq))
wake_up_locked(&ep->wq);
/* 如果epollfd也在被poll, 那就唤醒队列里面的所有成员. */
if (waitqueue_active(&ep->poll_wait))
pwake++;
out_unlock:
spin_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&ep->poll_wait);
return 1;
}
/*
* Implement the event wait interface for the eventpoll file. It is the kernel
* part of the user space epoll_wait(2).
*/
SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
int, maxevents, int, timeout)
{
int error;
struct file *file;
struct eventpoll *ep;
/* The maximum number of event must be greater than zero */
if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
return -EINVAL;
/* Verify that the area passed by the user is writeable */
/* 这个地方有必要说明一下:
* 内核对应用程序采取的策略是"绝对不信任",
* 所以内核跟应用程序之间的数据交互大都是copy, 不允许(也时候也是不能...)指针引用.
* epoll_wait()需要内核返回数据给用户空间, 内存由用户程序提供,
* 所以内核会用一些手段来验证这一段内存空间是不是有效的.
*/
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
error = -EFAULT;
goto error_return;
}
/* Get the "struct file *" for the eventpoll file */
error = -EBADF;
/* 获取epollfd的struct file, epollfd也是文件嘛 */
file = fget(epfd);
if (!file)
goto error_return;
/*
* We have to check that the file structure underneath the fd
* the user passed to us _is_ an eventpoll file.
*/
error = -EINVAL;
/* 检查一下它是不是一个真正的epollfd... */
if (!is_file_epoll(file))
goto error_fput;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
/* 获取eventpoll结构 */
ep = file->private_data;
/* Time to fish for events ... */
/* OK, 睡觉, 等待事件到来~~ */
error = ep_poll(ep, events, maxevents, timeout);
error_fput:
fput(file);
error_return:
return error;
}
/* 这个函数真正将执行epoll_wait的进程带入睡眠状态... */
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
int maxevents, long timeout)
{
int res, eavail;
unsigned long flags;
long jtimeout;
wait_queue_t wait;//等待队列
/*
* Calculate the timeout by checking for the "infinite" value (-1)
* and the overflow condition. The passed timeout is in milliseconds,
* that why (t * HZ) / 1000.
*/
/* 计算睡觉时间, 毫秒要转换为HZ */
jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
retry:
spin_lock_irqsave(&ep->lock, flags);
res = 0;
/* 如果ready list不为空, 就不睡了, 直接干活... */
if (list_empty(&ep->rdllist)) {
/*
* We don't have any available event to return to the caller.
* We need to sleep here, and we will be wake up by
* ep_poll_callback() when events will become available.
*/
/* OK, 初始化一个等待队列, 准备直接把自己挂起,
* 注意current是一个宏, 代表当前进程 */
init_waitqueue_entry(&wait, current);//初始化等待队列,wait表示当前进程
__add_wait_queue_exclusive(&ep->wq, &wait);//挂载到ep结构的等待队列
for (;;) {
/*
* We don't want to sleep if the ep_poll_callback() sends us
* a wakeup in between. That's why we set the task state
* to TASK_INTERRUPTIBLE before doing the checks.
*/
/* 将当前进程设置位睡眠, 但是可以被信号唤醒的状态,
* 注意这个设置是"将来时", 我们此刻还没睡! */
set_current_state(TASK_INTERRUPTIBLE);
/* 如果这个时候, ready list里面有成员了,
* 或者睡眠时间已经过了, 就直接不睡了... */
if (!list_empty(&ep->rdllist) || !jtimeout)
break;
/* 如果有信号产生, 也起床... */
if (signal_pending(current)) {
res = -EINTR;
break;
}
/* 啥事都没有,解锁, 睡觉... */
spin_unlock_irqrestore(&ep->lock, flags);
/* jtimeout这个时间后, 会被唤醒,
* ep_poll_callback()如果此时被调用,
* 那么我们就会直接被唤醒, 不用等时间了...
* 再次强调一下ep_poll_callback()的调用时机是由被监听的fd
* 的具体实现, 比如socket或者某个设备驱动来决定的,
* 因为等待队列头是他们持有的, epoll和当前进程
* 只是单纯的等待...
**/
jtimeout = schedule_timeout(jtimeout);//睡觉
spin_lock_irqsave(&ep->lock, flags);
}
__remove_wait_queue(&ep->wq, &wait);
/* OK 我们醒来了... */
set_current_state(TASK_RUNNING);
}
/* Is it worth to try to dig for events ? */
eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
spin_unlock_irqrestore(&ep->lock, flags);
/*
* Try to transfer events to user space. In case we get 0 events and
* there's still timeout left over, we go trying again in search of
* more luck.
*/
/* 如果一切正常, 有event发生, 就开始准备数据copy给用户空间了... */
if (!res && eavail &&
!(res = ep_send_events(ep, events, maxevents)) && jtimeout)
goto retry;
return res;
}
/* 这个简单, 我们直奔下一个... */
static int ep_send_events(struct eventpoll *ep,
struct epoll_event __user *events, int maxevents)
{
struct ep_send_events_data esed;
esed.maxevents = maxevents;
esed.events = events;
return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
}
/**
* ep_scan_ready_list - Scans the ready list in a way that makes possible for
* the scan code, to call f_op->poll(). Also allows for
* O(NumReady) performance.
*
* @ep: Pointer to the epoll private data structure.
* @sproc: Pointer to the scan callback.
* @priv: Private opaque data passed to the @sproc callback.
*
* Returns: The same integer error code returned by the @sproc callback.
*/
static int ep_scan_ready_list(struct eventpoll *ep,
int (*sproc)(struct eventpoll *,
struct list_head *, void *),
void *priv)
{
int error, pwake = 0;
unsigned long flags;
struct epitem *epi, *nepi;
LIST_HEAD(txlist);
/*
* We need to lock this because we could be hit by
* eventpoll_release_file() and epoll_ctl().
*/
mutex_lock(&ep->mtx);
/*
* Steal the ready list, and re-init the original one to the
* empty list. Also, set ep->ovflist to NULL so that events
* happening while looping w/out locks, are not lost. We cannot
* have the poll callback to queue directly on ep->rdllist,
* because we want the "sproc" callback to be able to do it
* in a lockless way.
*/
spin_lock_irqsave(&ep->lock, flags);
/* 这一步要注意, 首先, 所有监听到events的epitem都链到rdllist上了,
* 但是这一步之后, 所有的epitem都转移到了txlist上, 而rdllist被清空了,
* 要注意哦, rdllist已经被清空了! */
list_splice_init(&ep->rdllist, &txlist);
/* ovflist, 在ep_poll_callback()里面我解释过, 此时此刻我们不希望
* 有新的event加入到ready list中了, 保存后下次再处理... */
ep->ovflist = NULL;
spin_unlock_irqrestore(&ep->lock, flags);
/*
* Now call the callback function.
*/
/* 在这个回调函数里面处理每个epitem
* sproc 就是 ep_send_events_proc, 下面会注释到. */
error = (*sproc)(ep, &txlist, priv);
spin_lock_irqsave(&ep->lock, flags);
/*
* During the time we spent inside the "sproc" callback, some
* other events might have been queued by the poll callback.
* We re-insert them inside the main ready-list here.
*/
/* 现在我们来处理ovflist, 这些epitem都是我们在传递数据给用户空间时
* 监听到了事件. */
for (nepi = ep->ovflist; (epi = nepi) != NULL;
nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
/*
* We need to check if the item is already in the list.
* During the "sproc" callback execution time, items are
* queued into ->ovflist but the "txlist" might already
* contain them, and the list_splice() below takes care of them.
*/
/* 将这些直接放入readylist */
if (!ep_is_linked(&epi->rdllink))
list_add_tail(&epi->rdllink, &ep->rdllist);
}
/*
* We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
* releasing the lock, events will be queued in the normal way inside
* ep->rdllist.
*/
ep->ovflist = EP_UNACTIVE_PTR;
/*
* Quickly re-inject items left on "txlist".
*/
/* 上一次没有处理完的epitem, 重新插入到ready list */
list_splice(&txlist, &ep->rdllist);
/* ready list不为空, 直接唤醒... */
if (!list_empty(&ep->rdllist)) {
/*
* Wake up (if active) both the eventpoll wait list and
* the ->poll() wait list (delayed after we release the lock).
*/
if (waitqueue_active(&ep->wq))
wake_up_locked(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
spin_unlock_irqrestore(&ep->lock, flags);
mutex_unlock(&ep->mtx);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&ep->poll_wait);
return error;
}
/* 该函数作为callbakc在ep_scan_ready_list()中被调用
* head是一个链表, 包含了已经ready的epitem,
* 这个不是eventpoll里面的ready list, 而是上面函数中的txlist.
*/
static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
void *priv)
{
struct ep_send_events_data *esed = priv;
int eventcnt;
unsigned int revents;
struct epitem *epi;
struct epoll_event __user *uevent;
/*
* We can loop without lock because we are passed a task private list.
* Items cannot vanish during the loop because ep_scan_ready_list() is
* holding "mtx" during this call.
*/
/* 扫描整个链表... */
for (eventcnt = 0, uevent = esed->events;
!list_empty(head) && eventcnt < esed->maxevents;) {
/* 取出第一个成员 */
epi = list_first_entry(head, struct epitem, rdllink);
/* 然后从链表里面移除 */
list_del_init(&epi->rdllink);
/* 读取events,
* 注意events我们ep_poll_callback()里面已经取过一次了, 为啥还要再取?
* 1. 我们当然希望能拿到此刻的最新数据, events是会变的~
* 2. 不是所有的poll实现, 都通过等待队列传递了events, 有可能某些驱动压根没传
* 必须主动去读取. */
revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
epi->event.events;
/*
* If the event mask intersect the caller-requested one,
* deliver the event to userspace. Again, ep_scan_ready_list()
* is holding "mtx", so no operations coming from userspace
* can change the item.
*/
if (revents) {
/* 将当前的事件和用户传入的数据都copy给用户空间,
* 就是epoll_wait()后应用程序能读到的那一堆数据. */
if (__put_user(revents, &uevent->events) ||
__put_user(epi->event.data, &uevent->data)) {
/* 如果copy过程中发生错误, 会中断链表的扫描,
* 并把当前发生错误的epitem重新插入到ready list.
* 剩下的没处理的epitem也不会丢弃, 在ep_scan_ready_list()
* 中它们也会被重新插入到ready list */
list_add(&epi->rdllink, head);
return eventcnt ? eventcnt : -EFAULT;
}
eventcnt++;
uevent++;
if (epi->event.events & EPOLLONESHOT)
epi->event.events &= EP_PRIVATE_BITS;
else if (!(epi->event.events & EPOLLET)) {
/*
* If this file has been added with Level
* Trigger mode, we need to insert back inside
* the ready list, so that the next call to
* epoll_wait() will check again the events
* availability. At this point, noone can insert
* into ep->rdllist besides us. The epoll_ctl()
* callers are locked out by
* ep_scan_ready_list() holding "mtx" and the
* poll callback will queue them in ep->ovflist.
*/
/* 嘿嘿, EPOLLET和非ET的区别就在这一步之差呀~
* 如果是ET, epitem是不会再进入到readly list,
* 除非fd再次发生了状态改变, ep_poll_callback被调用.
* 如果是非ET, 不管你还有没有有效的事件或者数据,
* 都会被重新插入到ready list, 再下一次epoll_wait
* 时, 会立即返回, 并通知给用户空间. 当然如果这个
* 被监听的fds确实没事件也没数据了, epoll_wait会返回一个0,
* 空转一次.
*/
list_add_tail(&epi->rdllink, &ep->rdllist);
}
}
}
return eventcnt;
}
/* ep_free在epollfd被close时调用,
* 释放一些资源而已, 比较简单 */
static void ep_free(struct eventpoll *ep)
{
struct rb_node *rbp;
struct epitem *epi;
/* We need to release all tasks waiting for these file */
if (waitqueue_active(&ep->poll_wait))
ep_poll_safewake(&ep->poll_wait);
/*
* We need to lock this because we could be hit by
* eventpoll_release_file() while we're freeing the "struct eventpoll".
* We do not need to hold "ep->mtx" here because the epoll file
* is on the way to be removed and no one has references to it
* anymore. The only hit might come from eventpoll_release_file() but
* holding "epmutex" is sufficent here.
*/
mutex_lock(&epmutex);
/*
* Walks through the whole tree by unregistering poll callbacks.
*/
for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
epi = rb_entry(rbp, struct epitem, rbn);
ep_unregister_pollwait(ep, epi);
}
/*
* Walks through the whole tree by freeing each "struct epitem". At this
* point we are sure no poll callbacks will be lingering around, and also by
* holding "epmutex" we can be sure that no file cleanup code will hit
* us during this operation. So we can avoid the lock on "ep->lock".
*/
/* 之所以在关闭epollfd之前不需要调用epoll_ctl移除已经添加的fd,
* 是因为这里已经做了... */
while ((rbp = rb_first(&ep->rbr)) != NULL) {
epi = rb_entry(rbp, struct epitem, rbn);
ep_remove(ep, epi);
}
mutex_unlock(&epmutex);
mutex_destroy(&ep->mtx);
free_uid(ep->user);
kfree(ep);
}
/* File callbacks that implement the eventpoll file behaviour */
static const struct file_operations eventpoll_fops = {
.release = ep_eventpoll_release,
.poll = ep_eventpoll_poll
};
/* Fast test to see if the file is an evenpoll file */
static inline int is_file_epoll(struct file *f)
{
return f->f_op == &eventpoll_fops;
}
/* OK, eventpoll我认为比较重要的函数都注释完了... */
Linux之epoll详细解析实现的更多相关文章
- Linux多线程编程详细解析----条件变量 pthread_cond_t
Linux操作系统下的多线程编程详细解析----条件变量 1.初始化条件变量pthread_cond_init #include <pthread.h> int pthread_cond_ ...
- Arm Linux系统调用流程详细解析
Linux系统通过向内核发出系统调用(system call)实现了用户态进程和硬件设备之间的大部分接口. 系统调用是操作系统提供的服务,用户程序通过各种系统调用,来引用内核提供的各种服务,系统调用的 ...
- 【内核】探究linux内核,超详细解析子系统
Perface 前面已经写过一篇<嵌入式linux内核的五个子系统>,概括性比较强,也比较简略,现在对其进行补充说明. 仅留此笔记,待日后查看及补充! Linux内核的子系统 内核是操作系 ...
- 详细解析Linux scp命令的应用
详细解析Linux scp命令的应用 Linux命令有人统计说是有4000多个,Linux scp命令是用于Linux之间复制文件和目录,这里详细介绍scp命令使用和参数. AD: Linux scp ...
- ZT Linux系统环境下的Socket编程详细解析
Linux系统环境下的Socket编程详细解析 来自: http://blog.163.com/jiangh_1982/blog/static/121950520082881457775/ 什么是So ...
- (转)linux应用之test命令详细解析
linux应用之test命令详细解析 原文:https://www.cnblogs.com/tankblog/p/6160808.html test命令用法. 功能:检查文件和比较值 1)判断表达式 ...
- include_path详细解析
include_path详细解析 原文地址:http://www.laruence.com/2010/05/04/1450.html 1.php默认的包含路径为 .;C:\php\pear 即 ...
- Python——在Python中如何使用Linux的epoll
在Python中如何使用Linux的epoll 目录 序言 阻塞socket编程示例 异步socket的好处以及Linux epoll 带epoll的异步socket编程示例 性能注意事项 源代码 序 ...
- skb详细解析【转】
skb详细解析[转] 摘自:http://blog.chinaunix.net/uid-30035229-id-4883992.html 在自己的模块发送函数中,需要对skb进行重新构造 ...
随机推荐
- [BZOJ1899]Lunch 午餐(DP)
[BZOJ1899] 首先有个很贪心的思路,吃饭时间长的最先打饭为最优,所以开始先排个序 然后考虑DP,我们不需要知道某个人在哪个对,只要关注总的时间就行了 肯定需要一维表示当前同学编号,还需要表示某 ...
- python-13常用内建模块
1-datetime #1-获取当前日期和时间 from datetime import datetime now = datetime.now() #当前时间 print(now) #2015-05 ...
- contest0 from codechef
A CodeChef - KSPHERES 中文题意 Mandarin Chinese Eugene has a sequence of upper hemispheres and another ...
- ISCSI网络存储
ISCSI(iSCSI,Internet Small Computer System Interface) iSCSI技术实现了物理硬盘设备与TCP/IP网络协议的相互结合,使得用户可以通过互联网方便 ...
- 20145202课后题,2.56&9.16
我做的是2.56题,要求我用多组值来测试show_bytes 9.16 主要是对局部性进行了一些分析. 实验楼里面是空的,我电脑上显示不出来,所以我就做了一些书上的习题. 第十章的所有题目都被学长做过 ...
- mybatis异常:There is no getter for property named 'xxx' in 'xxx'
在使用mybatis查询的时候出现了下面的异常: org.apache.ibatis.reflection.ReflectionException: There is no getter for pr ...
- easyui-datagrid单选模式下隐藏表头的全选框
easyui-datagrid可以不使用复选框来进行单选,直接使用onSelect和 singleSelect:true就可以实现单选,但是有一些用户会比较习惯使用勾选框,这时会加一列checkbox ...
- Python语法之com[1][:-7]
strCom = com[0] + ": " + com[1][:-7] 如上应该是一个字符串合成,最后的[1][:-7],我理解是去除com[1]的最后7个字符. 比如com[0 ...
- Android学习记录(4)—在java中学习多线程下载的基本原理和基本用法①
多线程下载在我们生活中非常常见,比如迅雷就是我们常用的多线程的下载工具,当然还有断点续传,断点续传我们在下一节来讲,android手机端下载文件时也可以用多线程下载,我们这里是在java中写一个测试, ...
- Swift 与众不同的地方
Swift 与众不同的地方 switch(元组) 特点 其他语言中的switch语句只能比较离散的整形数据(字符可以转换成整数) 但是swift中可以比较整数.浮点数.字符.字符串.和元组数据类型,而 ...