题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1070

需要考虑前面修的车对后面等待的车造成的时间增加;

其实可以从每个人修车的顺序考虑,如果这辆车作为最后一辆被一个人修,那么它对后面的车无影响,而每提前一位,影响时间就增加一份;

也就是如果确定一辆车是第几个被修的,那么它的影响就可以单独确定;

费用流的选边策略是先选费用小的,再选费用大的,正可以对应这个过程;

所以把每个人拆成 n 个点表示修车顺序,然后车向对应的点连对应边权的边即可。

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int const xn=,xm=,inf=1e9;
int n,m,hd[xn],ct=,to[xm],nxt[xm],w[xm],c[xm],S,T;
int dis[xn],pre[xn],inc[xn];
bool vis[xn];
queue<int>q;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
int Min(int x,int y){return x<y?x:y;}
void ade(int x,int y,int z,int f){to[++ct]=y; nxt[ct]=hd[x]; hd[x]=ct; w[ct]=z; c[ct]=f;}
void add(int x,int y,int z,int f){ade(x,y,z,f); ade(y,x,-z,);}
int id(int x,int tp)
{
if(!tp)return m*n+x;
return (x-)*n+tp;
}
bool bfs()
{
for(int i=S;i<=T;i++)vis[i]=;
for(int i=S;i<=T;i++)dis[i]=inf;
dis[S]=; q.push(S); vis[S]=; inc[S]=inf;//inc!!
while(q.size())
{
int x=q.front(); q.pop(); vis[x]=;
for(int i=hd[x],u;i;i=nxt[i])
if(dis[u=to[i]]>dis[x]+w[i]&&c[i])
{
dis[u]=dis[x]+w[i]; pre[u]=i;
inc[u]=Min(inc[x],c[i]);
if(!vis[u])vis[u]=,q.push(u);
}
}
return dis[T]!=inf;
}
void up()
{
int x=T;
while(x!=S)
{
int i=pre[x];
c[i]-=inc[T]; c[i^]+=inc[T];
x=to[i^];
}
}
int main()
{
m=rd(); n=rd(); S=; T=id(n,)+;
for(int j=;j<=n;j++)
for(int i=,x;i<=m;i++)
{
x=rd();
for(int k=;k<=n;k++)
add(id(j,),id(i,k),k*x,);
}
for(int j=;j<=n;j++)add(S,id(j,),,);
for(int i=id(,);i<=id(m,n);i++)add(i,T,,);
int ans=;
while(bfs())ans+=dis[T]*inc[T],up();
printf("%.2f\n",1.0*ans/n);
return ;
}

bzoj 1070 修车 —— 费用流的更多相关文章

  1. BZOJ 1070 修车(费用流)

    如果能想到费用流,这道题就是显然了. 要求所有人的等待平均时间最小,也就是所有人的总等待时间最小. 每辆车只需要修一次,所以s连每辆车容量为1,费用为0的边. 现在需要把每个人拆成n个点,把车和每个人 ...

  2. bzoj 1070: [SCOI2007]修车 费用流

    1070: [SCOI2007]修车 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2785  Solved: 1110[Submit][Status] ...

  3. BZOJ 1070 修车 【费用流】

    Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同 的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序, ...

  4. 【BZOJ 1070】[SCOI2007]修车 费用流

    就是拆个点限制一下(两点一排一大片),这道题让我注意到了限制这个重要的词.我们跑网络流跑出来的图都是有一定意义的,一般这个意义就对应了问题的一种方案,一般情况下跑一个不知道对不对的方案是相对容易的我们 ...

  5. BZOJ 1070 修车(最小费用流)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1070 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术 ...

  6. BZOJ 1070 修车

    Description 同一时刻有\(N\)位车主带着他们的爱车来到了汽车维修中心.维修中心共有\(M\)位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这\(M\)位技术 ...

  7. P2053 [SCOI2007]修车 费用流

    $ \color{#0066ff}{ 题目描述 }$ 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M ...

  8. [SCOI2007][bzoj1070] 修车 [费用流]

    题面 传送门 思路 我们考虑某个工人修车的从前到后序列如下: ${W_1,W_2,W_3,...,W_n}$ 那么,对于这n辆车的车主而言,他们等候的总时间为: $\sum_{i=1}^{n}W_i\ ...

  9. [bzoj1070][SCOI2007]修车——费用流

    题目大意: 传送门 题解: 本题和(POJ3686)[http://poj.org/problem?id=3686]一题一模一样,而且还是数据缩小以后的弱化版QAQ,<挑战程序设计竞赛>一 ...

随机推荐

  1. Java NIO Buffer(netty源码死磕1.2)

    [基础篇]netty源码死磕1.2:  NIO Buffer 1. Java NIO Buffer Buffer是一个抽象类,位于java.nio包中,主要用作缓冲区.Buffer缓冲区本质上是一块可 ...

  2. 记一次Net软件逆向的过程(经典)

    查壳 1.先看下目录结构: 2.查下,是什么语言 ==> Net的,那不用说了,肯定能破解(毕竟是老本行嘛~) 混淆与反混淆 3.dnSpy打开后发现很多变量是乱码 4.用de4dot跑一波 5 ...

  3. 了解CentOS服务器的基本信息

    简单描述了如何从CPU.内存.硬盘性能.负载方面去了解自己工作的服务器性能.这个很重要,必须了解机器的方方面面才能提高在自己运维工作效率. 一.查看linux服务器cpu详情 查看物理cpu个数: [ ...

  4. Android SDK上手指南1:应用程序结构

    一直说要学java要学android开发,可是一直胡乱地忙活这忙活那,之前开始学了一点也中断了.说是没时间,都是借口,回顾一下自己的生活感觉缺少点激情,没有什么奋斗的动力,所以好多时间就浪费了.刚刚考 ...

  5. iOS中成员变量和属性区别

    历史由来: 接触iOS的人都知道,@property声明的属性默认会生成一个_类型的成员变量,同时也会生成setter/getter方法. 但这只是在iOS5之后,苹果推出的一个新机制.看老代码时,经 ...

  6. 狄利克雷卷积&莫比乌斯反演

    昨天刚说完不搞数论了,刚看到一个\(gcd\)的题目dalao用这个做了,虽然比正解麻烦,还是打算学一学了 数论函数: 数论函数的定义: 数论函数亦称算术函数,一类重要的函数,指定义在正整数集上的实值 ...

  7. 斯坦福机器学习视频笔记 Week1 线性回归和梯度下降 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

  8. 二分 连续上升子序列变形 UVA1471

    最大上升子序列解法: 1.动规转移方程 2.(nlogn) #include<cstdio> #include<algorithm> using namespace std; ...

  9. 在windows下进行linux开发:利用Vagrant+virtualbox

    1,介绍Vagrant 我们做web开发的时候经常要安装各种本地测试环境,比如apache,php,mysql,redis等等.出于个人使用习惯,可能我们还是比较习惯用windows.虽然说在wind ...

  10. idea中java异常

    1. Compilation failed: internal java compiler error 解决方案:File-->Setting...-->Build,Execution,D ...