John's trip

Language:Default
John's trip
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 11092 Accepted: 3796 Special Judge

Description

Little Johnny has got a new car. He decided to drive around the town to visit his friends. Johnny wanted to visit all his friends, but there was many of them. In each street he had one friend. He started thinking how to make his trip as short as possible. Very soon he realized that the best way to do it was to travel through each street of town only once. Naturally, he wanted to finish his trip at the same place he started, at his parents' house.



The streets in Johnny's town were named by integer numbers from 1 to n, n < 1995. The junctions were independently named by integer numbers from 1 to m, m <= 44. No junction connects more than 44 streets. All junctions in the town had different numbers. Each street was connecting exactly two junctions. No two streets in the town had the same number. He immediately started to plan his round trip. If there was more than one such round trip, he would have chosen the one which, when written down as a sequence of street numbers is lexicographically the smallest. But Johnny was not able to find even one such round trip.



Help Johnny and write a program which finds the desired shortest round trip. If the round trip does not exist the program should write a message. Assume that Johnny lives at the junction ending the street appears first in the input with smaller number. All streets in the town are two way. There exists a way from each street to another street in the town. The streets in the town are very narrow and there is no possibility to turn back the car once he is in the street

Input

Input file consists of several blocks. Each block describes one town. Each line in the block contains three integers x; y; z, where x > 0 and y > 0 are the numbers of junctions which are connected by the street number z. The end of the block is marked by the line containing x = y = 0. At the end of the input file there is an empty block, x = y = 0.

Output

Output one line of each block contains the sequence of street numbers (single members of the sequence are separated by space) describing Johnny's round trip. If the round trip cannot be found the corresponding output block contains the message "Round trip does not exist."

Sample Input

1 2 1
2 3 2
3 1 6
1 2 5
2 3 3
3 1 4
0 0
1 2 1
2 3 2
1 3 3
2 4 4
0 0
0 0

Sample Output

1 2 3 5 4 6
Round trip does not exist.

Source

John有很多朋友住在不同的街,John想去访问每位朋友,同时希望走的路最少。因为道路很窄,John在一条路上不能往回走。John希望从家里出发,拜访完所有的朋友后回到自己的家,且总的路程最短。John意识到如果可以每条道路都只走一次然后返回起点应该是最短的路径。写一个程序帮助John找到这样的路径。给出的每条街连接两个路口,最多有1995条街,最多44个路口。街编号由1到n, 路口分别编号1到m.

题解

就是判欧拉图找欧拉回路,递归改成迭代(这题不必要)。

1995年的题读入方式非常古怪。

#include<iostream>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll; co int N=4e3;
int n,m;
int head[N],ver[N],edge[N],next[N],tot;
int deg[N],stack[N],ans[N],top,t;
bool vis[N]; il void add(int x,int y,int z){
ver[++tot]=y,edge[tot]=z,next[tot]=head[x],head[x]=tot;
}
void euler(){
stack[++top]=2,vis[2]=vis[3]=1;
while(top){
int e=stack[top],x=ver[e],i=head[x];
while(i&&vis[i]) i=next[i];
if(i){
stack[++top]=i;
head[x]=next[i];
vis[i]=vis[i^1]=1;
}
else ans[++t]=edge[stack[top--]];
}
}
int main(){
int x,y,z;
while(read(x)|read(y)){
tot=1,t=0,top=0;
memset(deg,0,sizeof deg);
memset(head,0,sizeof head);
memset(vis,0,sizeof vis);
do{
read(z);
add(x,y,z),add(y,x,z);
++deg[x],++deg[y];
}while(read(x)|read(y));
bool flag=0;
for(int i=1;i<=50;++i)
if(deg[i]&1) {flag=1;break;}
if(flag){
puts("Round trip does not exist.");
continue;
}
euler();
for(int i=t;i>1;--i) printf("%d ",ans[i]);
printf("%d\n",ans[1]);
}
return 0;
}

POJ1041 John's trip的更多相关文章

  1. POJ1041 John's trip 【字典序输出欧拉回路】

    题目链接:http://poj.org/problem?id=1041 题目大意:给出一个连通图,判断是否存在欧拉回路,若存在输出一条字典序最小的路径. 我的想法: 1.一开始我是用结构体记录边的起点 ...

  2. poj1041 John's trip——字典序欧拉回路

    题目:http://poj.org/problem?id=1041 求字典序欧拉回路: 首先,如果图是欧拉图,就一定存在欧拉回路,直接 dfs 即可,不用 return 判断什么的,否则TLE... ...

  3. UVA302 John's trip(欧拉回路)

    UVA302 John's trip 欧拉回路 attention: 如果有多组解,按字典序输出. 起点为每组数据所给的第一条边的编号较小的路口 每次输出完额外换一行 保证连通性 每次输入数据结束后, ...

  4. Java实现John's trip(约翰的小汽车)

    1 问题描述 John's trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8998 Accepted: 3018 Sp ...

  5. 【poj1041】 John's trip

    http://poj.org/problem?id=1041 (题目链接) 题意 给出一张无向图,求字典序最小欧拉回路. Solution 这鬼畜的输入是什么心态啊mdzz,这里用vector储存边, ...

  6. John's trip(POJ1041+欧拉回路+打印路径)

    题目链接:http://poj.org/problem?id=1041 题目: 题意:给你n条街道,m个路口,每次输入以0 0结束,给你的u v t分别表示路口u和v由t这条街道连接,要输出从起点出发 ...

  7. poj 1041 John's trip 欧拉回路

    题目链接 求给出的图是否存在欧拉回路并输出路径, 从1这个点开始, 输出时按边的升序输出. 将每个点的边排序一下就可以. #include <iostream> #include < ...

  8. POJ 1041 John's trip 无向图的【欧拉回路】路径输出

    欧拉回路第一题TVT 本题的一个小技巧在于: [建立一个存放点与边关系的邻接矩阵] 1.先判断是否存在欧拉路径 无向图: 欧拉回路:连通 + 所有定点的度为偶数 欧拉路径:连通 + 除源点和终点外都为 ...

  9. John's trip POJ - 1041(这题数据有点水)

    题意: 其实还是一个欧拉回路,但要按字典序走路: 解析: 我真是蠢啊emm... map[i][j]表示由顶点i经街道j会到达的顶点编号 然后枚举j就好了 用栈储存.. 虽然我不是这样写的 #incl ...

随机推荐

  1. 解决Java工程URL路径中含有中文的情况

    问题: 当Java工程路径中含有中文时,得不到正确的路径 *** 解决: 这其实是编码转换的问题.当我们使用ClassLoader的getResource方法获取路径时,获取到的路径被URLEncod ...

  2. 列表按照字母排序检索SideBar

    项目中要求列表按照ABCD这种字母排序检索的功能,看了大神写的,瞬间崇拜了,接下来借大家参考参考了 首先是自定义view sidebar /** * @author J *一个自定义view 实现a- ...

  3. 去除app中的标题栏

    我之前一直用的是在oncreate方法中添加 requestWindowFeature(Window.FEATURE_NO_TITLE),并且必须写在setContentView(R.layout.a ...

  4. Hibernate 表连接hql语句

    现有两个表 user 表 和 VIPcard 表 UserVo  user VIPcardVo 中含有 UserVo user select v from VIPCardVo v left join ...

  5. linux c编程:进程控制(四)进程调度

    当系统中有多个进程到时候,哪个进程先执行,哪个进程后执行是由进程的优先级决定的.进程的优先级是由nice值决定的.nice值越小,优先级越高.可以看做越友好那么调度优先级越低.进程可以通过nice函数 ...

  6. vim python缩进等一些配置

    VIM python下的一些关于缩进的设置: 第一步:  打开终端,在终端上输入vim ~/.vimrc,回车.  第二步:  添加下面的文段: set filetype=python au BufN ...

  7. 保持linux下保持ssh不断线

    用ssh链接服务端,一段时间不操作或屏幕没输出(比如复制文件)的时候,会自动断开,有两种解决办法: 1.在客户端配置 #vi  /etc/ssh/ssh_config(注意不是/etc/ssh/ssh ...

  8. Redis高级进阶(一)

    一.redis中的事务 在关系型数据库中事务是必不可少的一个核心功能,生活中也是处处可见,比如我们去银行转账,首先需要将A账户的钱划走,然后存到B账户上,这两个步骤必须在同一事务中,要么都执行,要么都 ...

  9. java常用注解(更新中)

    注解根据来源可分为: 系统注解(自带的,取决于JDK版本).自定义注解及第三方注解 系统注解根据用途又可分为: java内置注解和元注解 根据运行机制(保留到什么时候)可分为: 源码注解.编译注解和运 ...

  10. POJ-3126 暑假集训-搜索进阶F题

     http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82828#problem/F 经验就是要认真细心,要深刻理解.num #include& ...