POJ1041 John's trip
John's trip
Language:Default
John's trip
Description Little Johnny has got a new car. He decided to drive around the town to visit his friends. Johnny wanted to visit all his friends, but there was many of them. In each street he had one friend. He started thinking how to make his trip as short as possible. Very soon he realized that the best way to do it was to travel through each street of town only once. Naturally, he wanted to finish his trip at the same place he started, at his parents' house.
The streets in Johnny's town were named by integer numbers from 1 to n, n < 1995. The junctions were independently named by integer numbers from 1 to m, m <= 44. No junction connects more than 44 streets. All junctions in the town had different numbers. Each street was connecting exactly two junctions. No two streets in the town had the same number. He immediately started to plan his round trip. If there was more than one such round trip, he would have chosen the one which, when written down as a sequence of street numbers is lexicographically the smallest. But Johnny was not able to find even one such round trip. Help Johnny and write a program which finds the desired shortest round trip. If the round trip does not exist the program should write a message. Assume that Johnny lives at the junction ending the street appears first in the input with smaller number. All streets in the town are two way. There exists a way from each street to another street in the town. The streets in the town are very narrow and there is no possibility to turn back the car once he is in the street Input Input file consists of several blocks. Each block describes one town. Each line in the block contains three integers x; y; z, where x > 0 and y > 0 are the numbers of junctions which are connected by the street number z. The end of the block is marked by the line containing x = y = 0. At the end of the input file there is an empty block, x = y = 0.
Output Output one line of each block contains the sequence of street numbers (single members of the sequence are separated by space) describing Johnny's round trip. If the round trip cannot be found the corresponding output block contains the message "Round trip does not exist."
Sample Input 1 2 1 Sample Output 1 2 3 5 4 6 Source |
John有很多朋友住在不同的街,John想去访问每位朋友,同时希望走的路最少。因为道路很窄,John在一条路上不能往回走。John希望从家里出发,拜访完所有的朋友后回到自己的家,且总的路程最短。John意识到如果可以每条道路都只走一次然后返回起点应该是最短的路径。写一个程序帮助John找到这样的路径。给出的每条街连接两个路口,最多有1995条街,最多44个路口。街编号由1到n, 路口分别编号1到m.
题解
就是判欧拉图找欧拉回路,递归改成迭代(这题不必要)。
1995年的题读入方式非常古怪。
#include<iostream>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
co int N=4e3;
int n,m;
int head[N],ver[N],edge[N],next[N],tot;
int deg[N],stack[N],ans[N],top,t;
bool vis[N];
il void add(int x,int y,int z){
ver[++tot]=y,edge[tot]=z,next[tot]=head[x],head[x]=tot;
}
void euler(){
stack[++top]=2,vis[2]=vis[3]=1;
while(top){
int e=stack[top],x=ver[e],i=head[x];
while(i&&vis[i]) i=next[i];
if(i){
stack[++top]=i;
head[x]=next[i];
vis[i]=vis[i^1]=1;
}
else ans[++t]=edge[stack[top--]];
}
}
int main(){
int x,y,z;
while(read(x)|read(y)){
tot=1,t=0,top=0;
memset(deg,0,sizeof deg);
memset(head,0,sizeof head);
memset(vis,0,sizeof vis);
do{
read(z);
add(x,y,z),add(y,x,z);
++deg[x],++deg[y];
}while(read(x)|read(y));
bool flag=0;
for(int i=1;i<=50;++i)
if(deg[i]&1) {flag=1;break;}
if(flag){
puts("Round trip does not exist.");
continue;
}
euler();
for(int i=t;i>1;--i) printf("%d ",ans[i]);
printf("%d\n",ans[1]);
}
return 0;
}
POJ1041 John's trip的更多相关文章
- POJ1041 John's trip 【字典序输出欧拉回路】
题目链接:http://poj.org/problem?id=1041 题目大意:给出一个连通图,判断是否存在欧拉回路,若存在输出一条字典序最小的路径. 我的想法: 1.一开始我是用结构体记录边的起点 ...
- poj1041 John's trip——字典序欧拉回路
题目:http://poj.org/problem?id=1041 求字典序欧拉回路: 首先,如果图是欧拉图,就一定存在欧拉回路,直接 dfs 即可,不用 return 判断什么的,否则TLE... ...
- UVA302 John's trip(欧拉回路)
UVA302 John's trip 欧拉回路 attention: 如果有多组解,按字典序输出. 起点为每组数据所给的第一条边的编号较小的路口 每次输出完额外换一行 保证连通性 每次输入数据结束后, ...
- Java实现John's trip(约翰的小汽车)
1 问题描述 John's trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8998 Accepted: 3018 Sp ...
- 【poj1041】 John's trip
http://poj.org/problem?id=1041 (题目链接) 题意 给出一张无向图,求字典序最小欧拉回路. Solution 这鬼畜的输入是什么心态啊mdzz,这里用vector储存边, ...
- John's trip(POJ1041+欧拉回路+打印路径)
题目链接:http://poj.org/problem?id=1041 题目: 题意:给你n条街道,m个路口,每次输入以0 0结束,给你的u v t分别表示路口u和v由t这条街道连接,要输出从起点出发 ...
- poj 1041 John's trip 欧拉回路
题目链接 求给出的图是否存在欧拉回路并输出路径, 从1这个点开始, 输出时按边的升序输出. 将每个点的边排序一下就可以. #include <iostream> #include < ...
- POJ 1041 John's trip 无向图的【欧拉回路】路径输出
欧拉回路第一题TVT 本题的一个小技巧在于: [建立一个存放点与边关系的邻接矩阵] 1.先判断是否存在欧拉路径 无向图: 欧拉回路:连通 + 所有定点的度为偶数 欧拉路径:连通 + 除源点和终点外都为 ...
- John's trip POJ - 1041(这题数据有点水)
题意: 其实还是一个欧拉回路,但要按字典序走路: 解析: 我真是蠢啊emm... map[i][j]表示由顶点i经街道j会到达的顶点编号 然后枚举j就好了 用栈储存.. 虽然我不是这样写的 #incl ...
随机推荐
- c/c++的一些小知识点2
- WebApi 中使用 Token
1.登陆的时候根据用户信息生成Token var token = FormsAuthentication.Encrypt( new FormsAuthenticationTicket( , " ...
- shell 字符串处理汇总(查找,替换等等)
字符串: 简称“串”.有限字符的序列.数据元素为字符的线性表,是一种数据的逻辑结构.在计算机中可有不同的存储结构.在串上可进行求子串.插入字符.删除字符.置换字符等运算. 字符: 计算机程序设计及操作 ...
- Eclipse 查看第三方jar包文件源代码解决方法
1.打开第三方依赖包,源文件的快捷键:ctrl + mouseClick 2.由于我们下载的第三方jar 包,如Spring等相关的依赖包时,并没有附加下载相应的源文件,所以经常出现如图的这种问题. ...
- scala actor编程之对象传递
scala 最吸引人的一点就是actor并发编程了.但是纵观scala官方文档,baidu文档,IBM文档都写的通过字符串传呀传,如果用作actor编程说明当然没有问题.但是在正式开放中,光传字符串就 ...
- linux 4 -awk
十一. awk编程: 1. 变量: 在awk中变量无须定义即可使用,变量在赋值时即已经完成了定义.变量的类型可以是数字.字符串.根据使用的不同,未初始化变量的值为0或空白字符串&q ...
- Linux里AWK中split函数的用法
跟java里的split函数的用法是很相像的,举例如下: The awk function split(s,a,sep) splits a string s into an awk array a u ...
- 混沌相关blog+节选
<数字化定量分析:一致性获利法时间跨度的定量研究> http://blog.sina.com.cn/s/blog_82cf83d50101a41q.html —— 用60分 ...
- webpack打包笔记
optimist是一个node库,将webpack.config.js与shell参数整合成options对象 options对象包含之后构建的重要信息,类似于webpack.config.js we ...
- Android系统Recovery工作原理之使用update.zip升级过程分析(三)【转】
本文转载自:http://blog.csdn.net/mu0206mu/article/details/7464699 以下的篇幅开始分析我们在上两个篇幅中生成的update.zip包在具体更新中所经 ...