John's trip

Language:Default
John's trip
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 11092 Accepted: 3796 Special Judge

Description

Little Johnny has got a new car. He decided to drive around the town to visit his friends. Johnny wanted to visit all his friends, but there was many of them. In each street he had one friend. He started thinking how to make his trip as short as possible. Very soon he realized that the best way to do it was to travel through each street of town only once. Naturally, he wanted to finish his trip at the same place he started, at his parents' house.



The streets in Johnny's town were named by integer numbers from 1 to n, n < 1995. The junctions were independently named by integer numbers from 1 to m, m <= 44. No junction connects more than 44 streets. All junctions in the town had different numbers. Each street was connecting exactly two junctions. No two streets in the town had the same number. He immediately started to plan his round trip. If there was more than one such round trip, he would have chosen the one which, when written down as a sequence of street numbers is lexicographically the smallest. But Johnny was not able to find even one such round trip.



Help Johnny and write a program which finds the desired shortest round trip. If the round trip does not exist the program should write a message. Assume that Johnny lives at the junction ending the street appears first in the input with smaller number. All streets in the town are two way. There exists a way from each street to another street in the town. The streets in the town are very narrow and there is no possibility to turn back the car once he is in the street

Input

Input file consists of several blocks. Each block describes one town. Each line in the block contains three integers x; y; z, where x > 0 and y > 0 are the numbers of junctions which are connected by the street number z. The end of the block is marked by the line containing x = y = 0. At the end of the input file there is an empty block, x = y = 0.

Output

Output one line of each block contains the sequence of street numbers (single members of the sequence are separated by space) describing Johnny's round trip. If the round trip cannot be found the corresponding output block contains the message "Round trip does not exist."

Sample Input

1 2 1
2 3 2
3 1 6
1 2 5
2 3 3
3 1 4
0 0
1 2 1
2 3 2
1 3 3
2 4 4
0 0
0 0

Sample Output

1 2 3 5 4 6
Round trip does not exist.

Source

John有很多朋友住在不同的街,John想去访问每位朋友,同时希望走的路最少。因为道路很窄,John在一条路上不能往回走。John希望从家里出发,拜访完所有的朋友后回到自己的家,且总的路程最短。John意识到如果可以每条道路都只走一次然后返回起点应该是最短的路径。写一个程序帮助John找到这样的路径。给出的每条街连接两个路口,最多有1995条街,最多44个路口。街编号由1到n, 路口分别编号1到m.

题解

就是判欧拉图找欧拉回路,递归改成迭代(这题不必要)。

1995年的题读入方式非常古怪。

#include<iostream>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll; co int N=4e3;
int n,m;
int head[N],ver[N],edge[N],next[N],tot;
int deg[N],stack[N],ans[N],top,t;
bool vis[N]; il void add(int x,int y,int z){
ver[++tot]=y,edge[tot]=z,next[tot]=head[x],head[x]=tot;
}
void euler(){
stack[++top]=2,vis[2]=vis[3]=1;
while(top){
int e=stack[top],x=ver[e],i=head[x];
while(i&&vis[i]) i=next[i];
if(i){
stack[++top]=i;
head[x]=next[i];
vis[i]=vis[i^1]=1;
}
else ans[++t]=edge[stack[top--]];
}
}
int main(){
int x,y,z;
while(read(x)|read(y)){
tot=1,t=0,top=0;
memset(deg,0,sizeof deg);
memset(head,0,sizeof head);
memset(vis,0,sizeof vis);
do{
read(z);
add(x,y,z),add(y,x,z);
++deg[x],++deg[y];
}while(read(x)|read(y));
bool flag=0;
for(int i=1;i<=50;++i)
if(deg[i]&1) {flag=1;break;}
if(flag){
puts("Round trip does not exist.");
continue;
}
euler();
for(int i=t;i>1;--i) printf("%d ",ans[i]);
printf("%d\n",ans[1]);
}
return 0;
}

POJ1041 John's trip的更多相关文章

  1. POJ1041 John's trip 【字典序输出欧拉回路】

    题目链接:http://poj.org/problem?id=1041 题目大意:给出一个连通图,判断是否存在欧拉回路,若存在输出一条字典序最小的路径. 我的想法: 1.一开始我是用结构体记录边的起点 ...

  2. poj1041 John's trip——字典序欧拉回路

    题目:http://poj.org/problem?id=1041 求字典序欧拉回路: 首先,如果图是欧拉图,就一定存在欧拉回路,直接 dfs 即可,不用 return 判断什么的,否则TLE... ...

  3. UVA302 John's trip(欧拉回路)

    UVA302 John's trip 欧拉回路 attention: 如果有多组解,按字典序输出. 起点为每组数据所给的第一条边的编号较小的路口 每次输出完额外换一行 保证连通性 每次输入数据结束后, ...

  4. Java实现John's trip(约翰的小汽车)

    1 问题描述 John's trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8998 Accepted: 3018 Sp ...

  5. 【poj1041】 John's trip

    http://poj.org/problem?id=1041 (题目链接) 题意 给出一张无向图,求字典序最小欧拉回路. Solution 这鬼畜的输入是什么心态啊mdzz,这里用vector储存边, ...

  6. John's trip(POJ1041+欧拉回路+打印路径)

    题目链接:http://poj.org/problem?id=1041 题目: 题意:给你n条街道,m个路口,每次输入以0 0结束,给你的u v t分别表示路口u和v由t这条街道连接,要输出从起点出发 ...

  7. poj 1041 John's trip 欧拉回路

    题目链接 求给出的图是否存在欧拉回路并输出路径, 从1这个点开始, 输出时按边的升序输出. 将每个点的边排序一下就可以. #include <iostream> #include < ...

  8. POJ 1041 John's trip 无向图的【欧拉回路】路径输出

    欧拉回路第一题TVT 本题的一个小技巧在于: [建立一个存放点与边关系的邻接矩阵] 1.先判断是否存在欧拉路径 无向图: 欧拉回路:连通 + 所有定点的度为偶数 欧拉路径:连通 + 除源点和终点外都为 ...

  9. John's trip POJ - 1041(这题数据有点水)

    题意: 其实还是一个欧拉回路,但要按字典序走路: 解析: 我真是蠢啊emm... map[i][j]表示由顶点i经街道j会到达的顶点编号 然后枚举j就好了 用栈储存.. 虽然我不是这样写的 #incl ...

随机推荐

  1. GUN C中的错误报告

    在C语言中,很多库函数在调用失败时都会返回特定的值.比如返回-1,空指针,EOF等.但是这些值仅仅表示的调用失败,并未给出详细的错误信息.如果想查看详细的错误内容,就要去查看errno的错误代码,er ...

  2. python解释器安装教程

    1. 首先,打开python的官网:python.org 2. 首页downloads下打开, 3. 最上边是两个最新的版本,长期计划,推荐使用python3,如果长期打算用p3,默认使用最新版本.如 ...

  3. tmpfs(转)

    什么是tmpfs tmpfs是Linux/Unix系统上的一种基于内存的文件系统.tmpfs可以使用您的内存或swap分区来存储文件. 实现原理:基于VM子系统 tmpfs是基于Linux的虚拟内存管 ...

  4. 算法调参 weight_ratio, weight_seqratio

    from openpyxl import Workbook import xlrd import time import Levenshtein as Le target_city_list = [' ...

  5. 【python】-- 基于Django的杂货铺

    Django的杂货铺 此篇文章保存基于Django而实现的各种小功能示例 1.验证码 + Session 这个是在前端图片验证码的生成,再配合Session进行后端校验的功能示例 import ran ...

  6. springboot带分页的条件查询

    QueryDSL简介 QueryDSL仅仅是一个通用的查询框架,专注于通过Java API构建类型安全的SQL查询. Querydsl可以通过一组通用的查询API为用户构建出适合不同类型ORM框架或者 ...

  7. 洛谷 P1558 色板游戏

    洛谷 题解里面好像都是压位什么的, 身为蒟蒻的我真的不会, 所以就来谈谈我的30颗线段树蠢方法吧! 这题初看没有头绪. 然后发现颜色范围好像只有30: 所以,我就想到一种\(sao\)操作,搞30颗线 ...

  8. centos6下nginx配置php可用

    先查看下所有服务的状态,看看php-fpm有没有正在运行 [root@centos64 html]# service --status-all php-fpm (pid  3568) 正在运行... ...

  9. Linux中rpm包管理器

    包全名: 1.操作的包是没有安装的软件包时,使用全名,而且要注意路径 2.例如:jdk-8u131-linux-x64.rpm包名: 1.操作的是已经安装好的软件包,使用包名,是搜索/var/lib/ ...

  10. c++得到本地username和IP

    bool CDlgResetAlarmInfo::GetLocalUserNameAddIP(CString &a_lstrUserName ,CString &a_IpStr) { ...