ACM学习历程—HDU5476 Explore Track of Point(平面几何)(2015上海网赛09题)
Problem Description
In Geometry, the problem of track is very interesting. Because in some cases, the track of point may be beautiful curve. For example, in polar Coordinate system,ρ=cos3θ is like rose, ρ=1−sinθ is a Cardioid, and so on. Today, there is a simple problem about it which you need to solve.
Give you a triangle ΔABC and
AB = AC. M is the midpoint of BC. Point P is in ΔABC and makes min{∠MPB+∠APC,∠MPC+∠APB} maximum. The track of P is Γ. Would
you mind calculating the length of Γ?
Given the coordinate of A, B, C, please output the length of Γ.
Input
There are T (1≤T≤104) test cases. For each case, one line
includes six integers the coordinate of A, B, C in order. It is guaranteed that
AB = AC and three points are not collinear. All coordinates do not exceed 104 by absolute value.
Output
For each case, first please output "Case
#k: ", k is the number of test case. See sample output for more detail.
Then, please output the length of Γ with
exactly 4 digits after the decimal point.
Sample Input
1
0 1 -1 0 1 0
Sample Output
Case #1: 3.2214
题目稍微转换一下就变成求∠MPB+∠APC=∠MPC+∠APB=180的点p的轨迹了。
这最后结论是一道平面几何题,高中数竞虽然搞过平面几何,不过基本全部忘光了,定理也只记得一个梅涅劳斯定理了。。。虽然当时就很弱。。
高中数竞时小烈平几就很强@hqwhqwhq,果然赛后题解交代了轨迹寻找的过程。。
http://blog.csdn.net/u014610830/article/details/48753415
虽然找的过程没怎么看懂,不过证明过程基本看懂了。
如果能猜出轨迹的话题目也就解决了,剩下就是怎么证明这个轨迹满足条件了。
首先三角形的高AM是满足条件的,基本是没问题的。
其次B和C点在极限情况下发现也是满足条件的,由于对称性,基本上剩余轨迹就是过B和C的一种图形。。。
运气好的话猜到它是个圆就能解决。。。
盗一张图:
结论是剩余的图是AB过B的垂线与AC过C的垂线交于点M,以M为圆心,BM为半径的圆弧。
接下来证明:
对于圆弧上某一点P,AP延长交圆于点D,
目测的话,∠BPM = ∠CPD。结论就是这个,接下来就是证明这个。
由于B、P、C、D四点共圆,根据托勒密定理:
CP*BD+BP*CD
= BC*DP
由根据割线定理:
AB*AB =
AP*AD
于是可得,三角形APB相似于三角形ABD
于是BP/BD
= AB/AD
同理得:CP/CD
= AC/AD
又AB=AC
于是BP/BD
= CP/CD
即BP*CD
= CP*BD
联合上面的托勒密得2BP*CD = 2CP*BD = BC*DP = 2BM*DP
提取BP*CD
= BM*DP
即BP/BM
= DP/CD
又∠MBP = ∠CDP(同弧所对圆周角相等)
于是三角形MBP相似于三角形CDP
于是结论得证。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long using namespace std; const double PI = acos(-); inline double dis(double xA, double yA, double xB, double yB)
{
double ans = (xA-xB)*(xA-xB) + (yA-yB)*(yA-yB);
return sqrt(ans);
} void work()
{
double xA, yA, xB, yB, xC, yC;
double a, h, d, ans, v, r;
scanf("%lf%lf%lf%lf%lf%lf", &xA, &yA, &xB, &yB, &xC, &yC);
d = dis(xB, yB, xC, yC)/;
h = dis(xA, yA, xB, yB);
a = asin(d/h);
v = PI-*a;
r = h*tan(a);
ans = sqrt(h*h-d*d)+v*r;
printf("%.4lf\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times <= T; ++times)
{
printf("Case #%d: ", times);
work();
}
return ;
}
ACM学习历程—HDU5476 Explore Track of Point(平面几何)(2015上海网赛09题)的更多相关文章
- ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)
Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...
- ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)
---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...
- ACM学习历程—HDU5478 Can you find it(数论)(2015上海网赛11题)
Problem Description Given a prime number C(1≤C≤2×105), and three integers k1, b1, k2 (1≤k1,k2,b1≤109 ...
- ACM学习历程—HDU5475 An easy problem(线段树)(2015上海网赛08题)
Problem Description One day, a useless calculator was being built by Kuros. Let's assume that number ...
- ACM学习历程—HDU 5025 Saving Tang Monk(广州赛区网赛)(bfs)
Problem Description <Journey to the West>(also <Monkey>) is one of the Four Great Classi ...
- hdu 5476 Explore Track of Point(2015上海网络赛)
题目链接:hdu 5476 今天和队友们搞出3道水题后就一直卡在这儿了,唉,真惨啊……看着被一名一名地挤出晋级名次,确实很不好受,这道恶心的几何题被我们3个搞了3.4个小时,我想到一半时发现样例输出是 ...
- ACM学习历程—HDU 5459 Jesus Is Here(递推)(2015沈阳网赛1010题)
Sample Input 9 5 6 7 8 113 1205 199312 199401 201314 Sample Output Case #1: 5 Case #2: 16 Case #3: 8 ...
- ACM学习历程—HDU 5451 Best Solver(Fibonacci数列 && 快速幂)(2015沈阳网赛1002题)
Problem Description The so-called best problem solver can easily solve this problem, with his/her ch ...
- ACM学习历程—HDU 5443 The Water Problem(RMQ)(2015长春网赛1007题)
Problem Description In Land waterless, water is a very limited resource. People always fight for the ...
随机推荐
- OGEngine教程:字体工具使用
1.打开 BitmapFont tool,在红框中输入你要显示的字. 2.写完后保存字体文件 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvT3Jhbmdl ...
- poj1408(求线段交点)
求出所有线段的交点,然后利用叉乘求四边形面积即可. // // main.cpp // poj1408 // // Created by 陈加寿 on 15/12/31. // Copyright ( ...
- 【BZOJ3784】树上的路径 点分治序+ST表
[BZOJ3784]树上的路径 Description 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a< ...
- ACM暑假集训第三周小结
这一周学的图论,学了这么些 两种存图的方法:邻接矩阵( map[n][n] ) , 邻接表( headlis[n] , vector<int> G[n] )存图的方法,各有各的好,我的理解 ...
- 大数据学习系列(7)-- hadoop集群搭建
1.配置ssh免登陆 #进入到我的home目录 cd ~/.ssh ssh-keygen -t rsa 执行完这个命令后,会生成两个文件id_rsa(私钥).id_rsa.pub(公钥) 将公钥拷贝到 ...
- js跨浏览器复制: ZeroClipboard
实例结构: demo.html <script type="text/javascript" src='http://code.jquery.com/jquery.js'&g ...
- 【python】-- 模块、os、sys、time/datetime、random、logging、re
模块 模块,用一堆代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个 ...
- 使VS自动生成代码注释
1.注释模板位置C:\Program Files\Microsoft Visual Studio 11.0\Common7\IDE\ItemTemplatesCache 里面有各种脚本的模板 2.找到 ...
- static_new
<?php //在::操作符的左边写上类的名称来静态地访问某个成员,这样就可以避免创建类的实例. //这样不仅可以省略掉实例化类的代码,而且还会更高效,因为类的每个实例都会占用一小部分的系统资源 ...
- Oracle数据库体系结构(7) 表空间管理1
表空间是Oracle数据库最大的逻辑存储结构,有一系列段构成.Oracle数据库对象存储结构的管理主要是通过表空间的管理实现的. 1.表空间的分类 表空间根据存储类型不同分为系统表空间和非系统表空间 ...