Tensorflow Summary用法
本文转载自:https://www.cnblogs.com/lyc-seu/p/8647792.html
Tensorflow
Summary
用法
tf.summary有诸多函数:
1、tf.summary.scalar
用来显示标量信息,其格式为:
tf.summary.scalar(tags, values, collections=None, name=None)
例如:tf.summary.scalar('mean', mean)
一般在画loss,accuary时会用到这个函数。
2、tf.summary.histogram
用来显示直方图信息,其格式为:
tf.summary.histogram(tags, values, collections=None, name=None)
例如: tf.summary.histogram('histogram', var)
一般用来显示训练过程中变量的分布情况
3、tf.summary.distribution
分布图,一般用于显示weights分布
4、tf.summary.text
可以将文本类型的数据转换为tensor写入summary中:
例如:
text = """/a/b/c\\_d/f\\_g\\_h\\_2017"""
summary_op0 = tf.summary.text('text', tf.convert_to_tensor(text))
5、tf.summary.image
输出带图像的probuf,汇总数据的图像的的形式如下: ' tag /image/0', ' tag /image/1'...,如:input/image/0等。
格式:tf.summary.image(tag, tensor, max_images=3, collections=None, name=Non
6、tf.summary.audio
展示训练过程中记录的音频
7、tf.summary.merge_all
merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。如果没有特殊要求,一般用这一句就可一显示训练时的各种信息了。
格式:tf.summaries.merge_all(key='summaries')
8、tf.summary.FileWriter
指定一个文件用来保存图。
格式:tf.summary.FileWritter(path,sess.graph)
可以调用其add_summary()方法将训练过程数据保存在filewriter指定的文件中
Tensorflow Summary 用法示例:
tf.summary.scalar('accuracy',acc) #生成准确率标量图
merge_summary = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址
......(交叉熵、优化器等定义)
for step in xrange(training_step): #训练循环
train_summary = sess.run(merge_summary,feed_dict = {...})#调用sess.run运行图,生成一步的训练过程数据
train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存
此时开启tensorborad:
tensorboard --logdir=/summary_dir
便能看见accuracy曲线了。
另外,如果我不想保存所有定义的summary信息,也可以用tf.summary.merge方法有选择性地保存信息:
9、tf.summary.merge
格式:tf.summary.merge(inputs, collections=None, name=None)
一般选择要保存的信息还需要用到tf.get_collection()函数
示例:
tf.summary.scalar('accuracy',acc) #生成准确率标量图
merge_summary = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),...(其他要显示的信息)])
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址
......(交叉熵、优化器等定义)
for step in xrange(training_step): #训练循环
train_summary = sess.run(merge_summary,feed_dict = {...})#调用sess.run运行图,生成一步的训练过程数据
train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存
使用tf.get_collection函数筛选图中summary信息中的accuracy信息,这里的
tf.GraphKeys.SUMMARIES 是summary在collection中的标志。
当然,也可以直接:
acc_summary = tf.summary.scalar('accuracy',acc) #生成准确率标量图
merge_summary = tf.summary.merge([acc_summary ,...(其他要显示的信息)]) #这里的[]不可省
如果要在tensorboard中画多个数据图,需定义多个tf.summary.FileWriter并重复上述过程。
Tensorflow Summary用法的更多相关文章
- Tensorflow学习笔记——Summary用法
tensorboard 作为一款可视化神器,可以说是学习tensorflow时模型训练以及参数可视化的法宝. 而在训练过程中,主要用到了tf.summary()的各类方法,能够保存训练过程以及参数分布 ...
- Ext.Net学习笔记15:Ext.Net GridPanel 汇总(Summary)用法
Ext.Net学习笔记15:Ext.Net GridPanel 汇总(Summary)用法 Summary的用法和Group一样简单,分为两步: 启用Summary功能 在Feature标签内,添加如 ...
- tensorflow API _ 5 (tensorflow.summary)
tensorflow的可视化是使用summary和tensorboard合作完成的. 基本用法 首先明确一点,summary也是op. 输出网络结构 with tf.Session() as sess ...
- 第一节,TensorFlow基本用法
一 TensorFlow安装 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tsnsor(张量)意味着N维数组,Flow(流)意味着基 ...
- tensorflow summary demo with linear-model
tf.summary + tensorboard 用来把graph图中的相关信息,如结构图.学习率.准确率.Loss等数据,写入到本地硬盘,并通过浏览器可视化之. 整理的代码如下: import te ...
- tensor flow中summary用法总结
对于用法的总结详细的参见博文https://www.cnblogs.com/lyc-seu/p/8647792.html
- 通俗易懂之Tensorflow summary类 & 初识tensorboard
前面学习的cifar10项目虽小,但却五脏俱全.全面理解该项目非常有利于进一步的学习和提高,也是走向更大型项目的必由之路.因此,summary依然要从cifar10项目说起,通俗易懂的理解并运用sum ...
- tensorflow summary
定义summary writer = tf.summary.FileWriter(logdir=self.han_config.log_path, graph=session.graph) 1.sca ...
- tensorflow SavedModelBuilder用法
训练代码: # coding: utf-8 from __future__ import print_function from __future__ import division import t ...
随机推荐
- linux字符集查看与设置
linux字符集查看与设置 命令:locale -a 查看本地的字符集 locale -m 查看所有支持的字符集 查看当前默认设置 echo $LANG 记录系统默认使用 ...
- centos6安装nginx最详细步骤
第一步:在centos下面下载 nginx wget http://nginx.org/download/nginx-1.2.9.tar.gz 解压 tar zxf nginx-1. ...
- easyui的 一些经验
1. 渲染网络表格时,行操作 <th field="sort_num" width="10" data-options="field:'id', ...
- 第6条:在单次切片操作内,不要同时指定start、end和stride
核心知识点: 1.使用负步进可以反转取值字符串及ASCII. 2.stride最好不要与start和end用在一起,会降低代码可读性. 除了基本的切片操作之外,python还提供了somelist[s ...
- LeetCode:有效三角形的个数【611】
LeetCode:有效三角形的个数[611] 题目描述 给定一个包含非负整数的数组,你的任务是统计其中可以组成三角形三条边的三元组个数. 示例 1: 输入: [2,2,3,4] 输出: 3 解释: 有 ...
- Yii2 关于电子商务的开源项目
https://github.com/samdark/yii2-shop https://github.com/omnilight/yii2-shopping-cart https://github. ...
- python 3 mysql 单表查询
python 3 mysql 单表查询 1.准备表 company.employee 员工id id int 姓名 emp_name varchar 性别 sex enum 年龄 age int 入职 ...
- linux swap的添加等等
1. 先说下 swap的卸载 fdisk -l 或者 free -m 看下 swap挂载的是磁盘,还是 文件生成的 如果是系统创建时就分配好的swap,就使用 swapoff /dev/*** 进 ...
- Neutron RPC API Layer
Client Side Here is an example of an rpc client definition: import oslo_messaging from neutron.commo ...
- php之定义大字符串数据时使用定界符来标识
在定义大字符串数据时,通常使用定界符来标识,这种方式能保留文本中的格式,如文本中的换行.定界符使用格式如下. <<<identifier 格式化文本 identifier 其中,符号 ...