洛谷P2146 树链剖分
思路:直接树链剖分,用线段树维护即可,算是树剖的经典题目吧。
代码:
#include <bits/stdc++.h>
#define ls(x) (x << 1)
#define rs(x) ((x << 1) | 1)
using namespace std;
const int maxn = 100010;
int head[maxn], Next[maxn * 2], ver[maxn * 2];
int sz[maxn], son[maxn], d[maxn], dfn[maxn], top[maxn], f[maxn];
int tot, cnt;
int n;
struct SegmentTree {
int val, lz;
int l, r;
};
SegmentTree tr[maxn * 4];
void add(int x, int y) {
ver[++tot] = y;
Next[tot] = head[x];
head[x] = tot;
}
void dfs1(int x, int fa = -1) {
sz[x] = 1;
f[x] = fa;
int mx = 0;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if(y == fa) continue;
d[y] = d[x] + 1;
dfs1(y, x);
sz[x] += sz[y];
if(sz[y] > mx) {
mx = sz[y];
son[x] = y;
}
}
}
void dfs2(int x, int fa, int t) {
dfn[x] = ++cnt;
top[x] = t;
if(son[x]) dfs2(son[x], x, t);
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if(y == fa || y == son[x]) continue;
dfs2(y, x, y);
}
}
void pushup(int o) {
tr[o].val = tr[ls(o)].val + tr[rs(o)].val;
}
void maintain(int o, int val) {
tr[o].val = val * (tr[o].r - tr[o].l + 1);
tr[o].lz = val;
}
void pushdown(int o) {
if(tr[o].lz != -1) {
maintain(ls(o), tr[o].lz);
maintain(rs(o), tr[o].lz);
tr[o].lz = -1;
}
}
void build(int o, int l, int r) {
tr[o].l = l, tr[o].r = r;
if(l == r) {
tr[o].val = 0;
tr[o].lz = -1;
return;
}
int mid = (l + r) >> 1;
build(ls(o), l, mid);
build(rs(o), mid + 1, r);
pushup(o);
}
void update(int o, int l, int r, int ql, int qr, int val) {
if(l >= ql && r <= qr) {
tr[o].val = (r - l + 1) * val;
tr[o].lz = val;
return;
}
pushdown(o);
int mid = (l + r) >> 1;
if(ql <= mid) update(ls(o), l, mid, ql, qr, val);
if(qr > mid) update(rs(o), mid + 1, r, ql, qr, val);
pushup(o);
}
int query(int o, int l, int r, int ql, int qr) {
if(l >= ql && r <= qr) {
return tr[o].val;
}
pushdown(o);
int mid = (l + r) >> 1, ans = 0;
if(ql <= mid) ans += query(ls(o), l, mid , ql, qr);
if(qr > mid) ans += query(rs(o), mid + 1, r, ql, qr);
return ans;
}
int solve(int x) {
int ans = 0, st = x;
while(x != -1) {
ans += query(1, 1, n, dfn[top[x]], dfn[x]);
x = f[top[x]];
}
return d[st] - d[0] + 1 - ans;
}
void update1(int x, int val) {
while(x != -1) {
update(1, 1, n, dfn[top[x]], dfn[x], val);
x = f[top[x]];
}
}
char s[110];
int main() {
int x, m;
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d", &x);
add(x, i);
add(i, x);
}
f[0] = -1;
build(1, 1, n);
dfs1(0);
dfs2(0, -1, 0);
scanf("%d", &m);
while(m--) {
scanf("%s", s + 1);
if(s[1] == 'i') {
scanf("%d", &x);
int tmp = query(1, 1, n, dfn[x], dfn[x]);
if(tmp == 1) {
printf("0\n");
continue;
}
printf("%d\n", solve(x));
update1(x, 1);
} else {
scanf("%d", &x);
int tmp = query(1, 1, n, dfn[x], dfn[x]);
if(tmp == 0) {
printf("0\n");
continue;
}
printf("%d\n", query(1, 1, n, dfn[x], dfn[x] + sz[x] - 1));
update(1, 1, n, dfn[x], dfn[x] + sz[x] - 1, 0);
}
}
}
洛谷P2146 树链剖分的更多相关文章
- 【算法学习】【洛谷】树链剖分 & P3384 【模板】树链剖分 P2146 软件包管理器
刚学的好玩算法,AC2题,非常开心. 其实很早就有教过,以前以为很难就没有学,现在发现其实很简单也很有用. 更重要的是我很好调试,两题都是几乎一遍过的. 介绍树链剖分前,先确保已经学会以下基本技巧: ...
- 洛谷P3384 树链剖分
如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x ...
- 洛谷 P3384 树链剖分(模板题)
题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式 ...
- 【树链剖分】洛谷P3379 树链剖分求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 洛谷 P3384树链剖分 题解
题面 挺好的一道树剖模板: 首先要学会最模板的树剖: 然后这道题要注意几个细节: 初始化时,seg[0]=1,seg[root]=1,top[root]=root,rev[1]=root; 在线段树上 ...
- 洛谷 [P3384] 树链剖分 模版
支持各种数据结构上树,注意取膜. #include <iostream> #include <cstring> #include <algorithm> #incl ...
- 树链剖分详解(洛谷模板 P3384)
洛谷·[模板]树链剖分 写在前面 首先,在学树链剖分之前最好先把 LCA.树形DP.DFS序 这三个知识点学了 emm还有必备的 链式前向星.线段树 也要先学了. 如果这三个知识点没掌握好的话,树链剖 ...
- 【模板时间】◆模板·II◆ 树链剖分
[模板·II]树链剖分 学长给我讲树链剖分,然而我并没有听懂,还是自学有用……另外感谢一篇Blog +by 自为风月马前卒+ 一.算法简述 树链剖分可以将一棵普通的多叉树转为线段树计算,不但可以实现对 ...
- 洛谷P2146 [NOI2015]软件包管理器 题解 树链剖分+线段树
题目链接:https://www.luogu.org/problem/P2146 本题涉及算法: 树链剖分: 线段树(区间更新及求和,涉及懒惰标记) 然后对于每次 install x ,需要将 x 到 ...
随机推荐
- release和retain还有多少人在用
这年头,看到做IOS开发的专业公司,居然还在用release和retain这样的内存管理方式,是为了表示他很厉害吗? 我只能说他没有跟上时代的潮流,或者就是参加了某种老掉牙的IOS速成培训再入行的. ...
- JS循环遍历JSON数据的方法
JSON数据如:{"options":"[{/"text/":/"王家湾/",/"value/":/" ...
- MySQL 创建千万集数据
- MySQL测试任务:使用存储过程,往表中插入千万级数据,根据索引优化速度 -- 1.使用索引查询 -- 2.不使用索引查 -- 3.比较两者查询速度的差异 1.创建数据和索引 1.创建索引测试表 ...
- hdoj-1004-Let the Balloon Rise(map排序)
map按照value排序 #include <iostream> #include <algorithm> #include <cstring> #include ...
- Codeforces Round #262 (Div. 2)C(二分答案,延迟标记)
这是最大化最小值的一类问题,这类问题通常用二分法枚举答案就行了. 二分答案时,先确定答案肯定在哪个区间内.然后二分判断,关键在于怎么判断每次枚举的这个答案行不行. 我是用a[i]数组表示初始时花的高度 ...
- Shiro-Session
概述 Shiro提供了完整的企业级会话管理功能,不依赖于底层容器(如web容器tomcat),不管JavaSE还是JavaEE环境都可以使用,提供了会话管理.会话事件监听.会话存储/持久化.容器无关的 ...
- kong插件官方文档翻译
kong插件官方文档翻译 目录 介绍 文件结构 编写自定义逻辑 存储配置 访问数据存储 自定义实体 缓存自定义实体 扩展Admin API 编写测试 (卸载)安装你的插件 插件开发 - 介绍 什么是插 ...
- js相关命令
echo "<script>alert('您尚未关注,关注成功后方可下单!');location.href='http://www.baidu.com';</script& ...
- 推荐几本WinCE 6程序开发的书
因为学校期中考试和课程设计的原因,winCE6的项目开发耽误了一个多月的时间,现在学校没什么事情了,公司这边杂事也差不多办完了,可以专心的搞开发了,同时这也成了我的毕业设计,我不得不上心喽. 今天在卓 ...
- Oracle 闪回归档(Flashback Data Archive)
--检查权限 SELECT * FROM dba_sys_privs WHERE privilege LIKE '%FLASH%'; --设置权限 GRANT dba TO testuser;--设置 ...