洛谷P2146 树链剖分
思路:直接树链剖分,用线段树维护即可,算是树剖的经典题目吧。
代码:
#include <bits/stdc++.h>
#define ls(x) (x << 1)
#define rs(x) ((x << 1) | 1)
using namespace std;
const int maxn = 100010;
int head[maxn], Next[maxn * 2], ver[maxn * 2];
int sz[maxn], son[maxn], d[maxn], dfn[maxn], top[maxn], f[maxn];
int tot, cnt;
int n;
struct SegmentTree {
int val, lz;
int l, r;
};
SegmentTree tr[maxn * 4];
void add(int x, int y) {
ver[++tot] = y;
Next[tot] = head[x];
head[x] = tot;
}
void dfs1(int x, int fa = -1) {
sz[x] = 1;
f[x] = fa;
int mx = 0;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if(y == fa) continue;
d[y] = d[x] + 1;
dfs1(y, x);
sz[x] += sz[y];
if(sz[y] > mx) {
mx = sz[y];
son[x] = y;
}
}
}
void dfs2(int x, int fa, int t) {
dfn[x] = ++cnt;
top[x] = t;
if(son[x]) dfs2(son[x], x, t);
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if(y == fa || y == son[x]) continue;
dfs2(y, x, y);
}
}
void pushup(int o) {
tr[o].val = tr[ls(o)].val + tr[rs(o)].val;
}
void maintain(int o, int val) {
tr[o].val = val * (tr[o].r - tr[o].l + 1);
tr[o].lz = val;
}
void pushdown(int o) {
if(tr[o].lz != -1) {
maintain(ls(o), tr[o].lz);
maintain(rs(o), tr[o].lz);
tr[o].lz = -1;
}
}
void build(int o, int l, int r) {
tr[o].l = l, tr[o].r = r;
if(l == r) {
tr[o].val = 0;
tr[o].lz = -1;
return;
}
int mid = (l + r) >> 1;
build(ls(o), l, mid);
build(rs(o), mid + 1, r);
pushup(o);
}
void update(int o, int l, int r, int ql, int qr, int val) {
if(l >= ql && r <= qr) {
tr[o].val = (r - l + 1) * val;
tr[o].lz = val;
return;
}
pushdown(o);
int mid = (l + r) >> 1;
if(ql <= mid) update(ls(o), l, mid, ql, qr, val);
if(qr > mid) update(rs(o), mid + 1, r, ql, qr, val);
pushup(o);
}
int query(int o, int l, int r, int ql, int qr) {
if(l >= ql && r <= qr) {
return tr[o].val;
}
pushdown(o);
int mid = (l + r) >> 1, ans = 0;
if(ql <= mid) ans += query(ls(o), l, mid , ql, qr);
if(qr > mid) ans += query(rs(o), mid + 1, r, ql, qr);
return ans;
}
int solve(int x) {
int ans = 0, st = x;
while(x != -1) {
ans += query(1, 1, n, dfn[top[x]], dfn[x]);
x = f[top[x]];
}
return d[st] - d[0] + 1 - ans;
}
void update1(int x, int val) {
while(x != -1) {
update(1, 1, n, dfn[top[x]], dfn[x], val);
x = f[top[x]];
}
}
char s[110];
int main() {
int x, m;
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d", &x);
add(x, i);
add(i, x);
}
f[0] = -1;
build(1, 1, n);
dfs1(0);
dfs2(0, -1, 0);
scanf("%d", &m);
while(m--) {
scanf("%s", s + 1);
if(s[1] == 'i') {
scanf("%d", &x);
int tmp = query(1, 1, n, dfn[x], dfn[x]);
if(tmp == 1) {
printf("0\n");
continue;
}
printf("%d\n", solve(x));
update1(x, 1);
} else {
scanf("%d", &x);
int tmp = query(1, 1, n, dfn[x], dfn[x]);
if(tmp == 0) {
printf("0\n");
continue;
}
printf("%d\n", query(1, 1, n, dfn[x], dfn[x] + sz[x] - 1));
update(1, 1, n, dfn[x], dfn[x] + sz[x] - 1, 0);
}
}
}
洛谷P2146 树链剖分的更多相关文章
- 【算法学习】【洛谷】树链剖分 & P3384 【模板】树链剖分 P2146 软件包管理器
刚学的好玩算法,AC2题,非常开心. 其实很早就有教过,以前以为很难就没有学,现在发现其实很简单也很有用. 更重要的是我很好调试,两题都是几乎一遍过的. 介绍树链剖分前,先确保已经学会以下基本技巧: ...
- 洛谷P3384 树链剖分
如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x ...
- 洛谷 P3384 树链剖分(模板题)
题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式 ...
- 【树链剖分】洛谷P3379 树链剖分求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 洛谷 P3384树链剖分 题解
题面 挺好的一道树剖模板: 首先要学会最模板的树剖: 然后这道题要注意几个细节: 初始化时,seg[0]=1,seg[root]=1,top[root]=root,rev[1]=root; 在线段树上 ...
- 洛谷 [P3384] 树链剖分 模版
支持各种数据结构上树,注意取膜. #include <iostream> #include <cstring> #include <algorithm> #incl ...
- 树链剖分详解(洛谷模板 P3384)
洛谷·[模板]树链剖分 写在前面 首先,在学树链剖分之前最好先把 LCA.树形DP.DFS序 这三个知识点学了 emm还有必备的 链式前向星.线段树 也要先学了. 如果这三个知识点没掌握好的话,树链剖 ...
- 【模板时间】◆模板·II◆ 树链剖分
[模板·II]树链剖分 学长给我讲树链剖分,然而我并没有听懂,还是自学有用……另外感谢一篇Blog +by 自为风月马前卒+ 一.算法简述 树链剖分可以将一棵普通的多叉树转为线段树计算,不但可以实现对 ...
- 洛谷P2146 [NOI2015]软件包管理器 题解 树链剖分+线段树
题目链接:https://www.luogu.org/problem/P2146 本题涉及算法: 树链剖分: 线段树(区间更新及求和,涉及懒惰标记) 然后对于每次 install x ,需要将 x 到 ...
随机推荐
- Git之(一)Git是什么[转]
为什么使用Git 孔子曾经曰过的,名正则言顺 言顺则事成. 我们在学习一项新技术之前,弄清楚为什么要学它至关重要,至于为什么要学习Git,我用一段if-else语句告诉你原因: if(你相信我){ 我 ...
- phpstorm修改html模板
- 本地安装phpcms步骤
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u012145816/article/details/72183032 http://download ...
- 20165210 预习作业3 Linux安装及学习
Linux安装及学习 一.Linux安装 通过参考教程:基于VirtualBox虚拟机安装Ubuntu图文教程成功的安装上了Linux但在过程中还是有一些小问题的. 首先按着步骤走,一开始没什么毛病, ...
- BEC translation exercise 2
Forest fires are a regular feature of Chile's hot, arid summers.智利夏天炙热.干燥,常发生森林火灾.A nearly decade-lo ...
- mysql1130远程连接没有权限的解决方法
网上查了半天,终于解决 远程连接没有权限的原因有两种,一个是因为mysql的限制,一个是防火墙的限制. ,解决防火墙限制: 在mysql服务主机上将防火墙关闭或者在防火墙高级设置里面加入出入站规则,加 ...
- boost开发指南
C++确实很复杂,神一样的0x不知道能否使C++变得纯粹和干爽? boost很复杂,感觉某些地方有过度设计和太过于就事论事的嫌疑,对实际开发工作的考虑太过于理想化.学习boost本身就是一个复杂度,有 ...
- git常用命令收藏
git init //初始化本地git环境 git clone XXX//克隆一份代码到本地仓库 git pull //把远程库的代码更新到工作台 git pull --rebase origin m ...
- SaaS模式实现架构
SaaS模式实现架构 https://blog.csdn.net/xwq911/article/details/50630266 1. 数据库层: 数据库这一层的设计模式是很清晰的,无外乎只有3种方案 ...
- jq 侧边栏
HTML 侧边栏HTML代码: <div class="sidebar" id="sucaihuo"> <div class=&quo ...