[luogu3359]改造异或树
[luogu3359]改造异或树
luogu
和之前某道题类似只有删边的话考虑倒着加边
但是怎么统计答案呢?
我们考虑以任意点为根dfs一遍求出每个点到根的路径异或和s[i]
这样任意两点x,y的路径异或和可以表示成s[x] xor s[y]
那么设当前连的边的边权为w,我们要找出被连通的两个连通块中s[x] xor s[y]=w的(x,y)个数
考虑启发式合并,枚举size小的一边,另一边在map上查,然后把size小的map并到大的中去
#define ll long long
#include<bits/stdc++.h>
using namespace std;
const int _=1e5+5;
int re(){
int x=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
}
int n,cnt;
ll sum,ans[_];
map<int,ll>M[_];
map<int,ll>::iterator it;
int h[_],s[_],fa[_],a[_],b[_],c[_],p[_];
struct edge{int to,next,w;}e[_<<1];
int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
void link(int u,int v,int w){
e[++cnt]=(edge){v,h[u],w};h[u]=cnt;
e[++cnt]=(edge){u,h[v],w};h[v]=cnt;
}
void dfs(int u,int fa){
for(int i=h[u];i;i=e[i].next){
int v=e[i].to;
if(v==fa)continue;
s[v]=s[u]^e[i].w;
dfs(v,u);
}
}
int main(){
n=re();
for(int i=1;i<n;i++){
a[i]=re(),b[i]=re(),c[i]=re();
link(a[i],b[i],c[i]);
}
for(int i=1;i<n;i++)
p[i]=re();
dfs(1,0);
for(int i=1;i<=n;i++)fa[i]=i,M[i][s[i]]=1;
for(int i=n-1;i>=1;i--){
int x=find(a[p[i]]),y=find(b[p[i]]);
if(M[x].size()<M[y].size())swap(x,y);
fa[y]=x;
for(it=M[y].begin();it!=M[y].end();++it)
sum+=1ll*M[x][(*it).first]*(*it).second;
for(it=M[y].begin();it!=M[y].end();++it)
M[x][(*it).first]+=(*it).second;
ans[i]=sum;
}
for(int i=1;i<=n;i++)printf("%lld\n",ans[i]);
return 0;
}
[luogu3359]改造异或树的更多相关文章
- 洛谷 P3359 改造异或树
题目描述 给定一棵n 个点的树,每条边上都有一个权值.现在按顺序删掉所有的n-1条边,每删掉一条边询问当前有多少条路径满足路径上所有边权值异或和为0. 输入输出格式 输入格式: 第一行一个整数n. 接 ...
- luoguP3359 改造异或树 线段树合并
删边转化为加边 然后每次用线段树合并就行..... 确确实实很简单 然而为什么线段树合并跑不过$splay$的启发式合并,常数稍大了点... 复杂度$O(n \log n)$ #include < ...
- luoguP3359 改造异或树
https://www.luogu.org/problemnew/show/P3359 因为 a ^ b ^ b = a,所以我们预处理 1 到所有点的距离,将删边的操作反过来变成加边,对于每一个联通 ...
- HDU 4825 Trie树 异或树!
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)Total S ...
- BZOJ 4017 小 Q 的无敌异或 ( 树状数组、区间异或和、区间异或和之和、按位计贡献思想 )
题目链接 题意 : 中文题 分析 : 首先引入两篇写的很好的题解 题解一.题解二 听说这种和异或相关区间求和的问题都尽量按位考虑 首先第一问.按二进制位计贡献的话.那么对于第 k 位而言 其贡献 = ...
- HUST——1106xor的难题之二(异或树状数组单点修改和区间查询)
1106: xor的难题之二 时间限制: 2 Sec 内存限制: 128 MB 提交: 8 解决: 3 题目描述 上次Alex学长的问题xor难题很简单吧,现在hkhv学长有个问题想问你们. 他现 ...
- BootStrap-DualListBox怎样改造成为双树
BootStrap-DualListBox能够实现将所选择的列表项显示到右边,未选的列表项显示到左边. 但是左右两边的下拉框中都是单级列表.如果要实现将两边都是树(缩进树),选择某个节点时,其子节点也 ...
- 线段树+RMQ问题第二弹
线段树+RMQ问题第二弹 上篇文章讲到了基于Sparse Table 解决 RMQ 问题,不知道大家还有没有印象,今天我们会从线段树的方法对 RMQ 问题再一次讨论. 正式介绍今天解决 RMQ 问题的 ...
- Mysql索引数据结构为什么是B+树?
目录 Mysql索引数据结构 二叉树 红黑树 B-Tree B+Tree Mysql索引数据结构 下面列举了常见的数据结构 二叉树 红黑树 Hash表 B-Tree(B树) Select * from ...
随机推荐
- 2017.5.9 java多线程总结
参考来自:http://www.cnblogs.com/lwbqqyumidi/p/3804883.html http://blog.csdn.net/gf771115/article/details ...
- elasticsearch 基础性操作
1 基础概念 Elasticsearch是一个近实时的系统,从你写入数据到数据可以被检索到,一般会有1秒钟的延时.Elasticsearch是基于Lucene的,Lucene的读写是两个分开的句柄,往 ...
- HTML5 Canvas 用requestAnimation取代setInterval
<!DOCTYPE html> <html lang="utf-8"> <meta http-equiv="Content-Type&quo ...
- Binder与interface
在Interface中,asBinder函数涌来将服务类接口类型转换为IBinder类型: 相反的,asInterface函数用来将Ibinder类型转换为服务接口类型
- AngularJS, Ember.js, Backbone这类新框架与 jQuery的重要区别在哪里?
jQuery主要是用来操作DOM的,如果单单说jQuery的话就是这样一个功能,它的插件也比较多,大家也都各自专注一个功能,可以说jQuery体系是跟着前端页面从静态到动态崛起的一个产物,他的作用就是 ...
- flask的分页功能
分页是个很通用的东西,在flask中,有一个macro的语法,类似于宏,我们可以将通用的东西通过macro写入单独的html文件以方便维护,减少代码量.下面是我的分页的macro文件render_pa ...
- springboot 有用网址收集
http://www.ityouknow.com/spring-boot.html springboot多数据源配置: https://blog.csdn.net/neosmith/article/d ...
- Linux下Nagios的安装与配置(转载)
一.Nagios简介 Nagios是一款开源的电脑系统和网络监视工具,能有效监控Windows.Linux和Unix的主机状态,交换机路由器等网络设置,打印机等.在系统或服务状态异常时发出邮件或短信报 ...
- sql2000实现row_number
一.以PersonID,classid,dt_ClassData为条件进行分组,每个小组加序号,row_number在sql2005中不可用 方法一.sql2000及以上版本--以PersonID,c ...
- WebStorm初次使用
1. ctrl + / : 单行注释2. ctrl + shift + / : 块注释 3:展开当前函数代码:Ctrl+“+”,收起当前代码:Ctrl+“-” 4:全局查找: Ctrl+Shift+F ...