二分答案 + 前缀和。

题面中式子的意思是每一个区间$[l, r]$的贡献是这个区间内$w_i \geq W$的个数乘以这些$i$的$v_i$和。

很快发现了答案具有单调性,可以做两遍二分,分别看看小于$S$的值最大能取到多少以及大于$S$的最小能取到多少,然后取个$min$。

思考一下怎么判定,查询一个区间内比一个数大的数的个数和权值和,莫不是主席树???

被$dalao$$D$了,只要每一次都算一遍前缀和就好了,如果$w_i \geq W$就把$i$和$v_i$计入贡献,查询是$O(1)$的。

时间复杂度$O(nlogn)$。

如果是主席树还多一个$log$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 2e5 + ;
const int Maxn = 1e6 + ;
const ll inf = 1LL << ; int n, m, w[N], sumCnt[N];
ll cur, v[N], sumVal[N]; struct Segment {
int l, r;
} seg[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline ll solve(int mid) {
sumCnt[] = , sumVal[] = 0LL;
for(int i = ; i <= n; i++) {
sumCnt[i] = sumCnt[i - ], sumVal[i] = sumVal[i - ];
if(w[i] >= mid) ++sumCnt[i], sumVal[i] += v[i];
} ll res = 0LL;
for(int i = ; i <= m; i++)
res += 1LL * (sumCnt[seg[i].r] - sumCnt[seg[i].l - ]) * (sumVal[seg[i].r] - sumVal[seg[i].l - ]); return res;
} int main() {
read(n), read(m), read(cur);
for(int i = ; i <= n; i++)
read(w[i]), read(v[i]);
for(int i = ; i <= m; i++)
read(seg[i].l), read(seg[i].r); int ln = , rn = Maxn, mid, res = ;
for(; ln <= rn; ) {
mid = (ln + rn) / ;
if(solve(mid) <= cur) rn = mid - , res = mid;
else ln = mid + ;
} ll tmp = solve(res), ans = cur - tmp;
ln = , rn = Maxn, res = Maxn;
for(; ln <= rn; ) {
mid = (ln + rn) / ;
if(solve(mid) >= cur) ln = mid + , res = mid;
else rn = mid - ;
} tmp = solve(res);
if(tmp - cur < ans) ans = tmp - cur; printf("%lld\n", ans);
return ;
}

Luogu 1314 [NOIP2011] 聪明的质监员的更多相关文章

  1. NOIP2011聪明的质监员题解

    631. [NOIP2011] 聪明的质监员 ★★   输入文件:qc.in   输出文件:qc.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 小 T 是一名质量监督 ...

  2. NC16597 [NOIP2011]聪明的质监员

    NC16597 [NOIP2011]聪明的质监员 题目 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 \(n\) 个矿石,从 \(1\) 到 \(n\) 逐一编号,每个矿 ...

  3. 【洛谷P1314】[NOIP2011]聪明的质监员

    聪明的质监员 题目链接:https://www.luogu.org/problemnew/show/P1314 Y(W)随W的值增大而减小 二分W的值,找到最小的W使得Y(W)>S: 比较Y(W ...

  4. [NOIP2011]聪明的质监员 题解

    题目大意: 额--貌似蛮清晰的,就不赘述了. 思路: 首先不难发现M越大Y越小,因此可以二分答案(方向不要弄错),二分出最小的不小于S的Y即可.而计算Y时可用前缀和O(n+m)求得.两种边界情况也要考 ...

  5. NOIP2011 聪明的质监员

    描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li  ...

  6. [NOIP2011] 聪明的质监员 二分+前缀和

    考试的时候打的二分但没有用前缀和维护.但是有个小细节手误打错了结果挂掉了. 绝对值的话可能会想到三分,但是注意到w增大的时候y是减小的,所以单调性很明显,用二分就可以.但注意一个问题,就是二分最后的结 ...

  7. 题解【洛谷P1314】[NOIP2011]聪明的质监员

    题面 题解 不难发现,\(W\)增大时,\(Y\)值会随之减小. 于是考虑二分\(W\). 如何\(\mathcal{O}(N)check?\) 每一次前缀和记录一下\(1-i\)之间\(w_i \g ...

  8. Luogu P1314 [NOIP2011 提高组] 聪明的质监员

    P1314 [NOIP2011 提高组] 聪明的质监员 题意 题目描述 给定\(n\)个物品,给定每个物品的 重量 \(w_i\) 和 价值 \(v_i\) 给定一个标准值 \(s\) 以及一个参数 ...

  9. NOIP2011提高组 聪明的质监员 -SilverN

    题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[L ...

随机推荐

  1. 剑指offer--5.变态跳台阶

    WA了一次,错误数据4,输出8,怎么真么熟悉呢?改个return过了,OMG ------------------------------------------------------------- ...

  2. 修改dedecms 列表页上一页 下一页 方法!

    dedecms根目录下include文件夹下:arc.listview.class.php文件! 1.简单文字替换:如 上一页替换成上页,直接替换即可! 2.文字替换成图片:上一页替换成<img ...

  3. 用TCP穿透NAT(TCP打洞)的实现

    目录 TCP穿透原理 程序思路 声明 上代码 运行示例 1. TCP穿透原理: 我们假设在两个不同的局域网后面分别有2台客户机A和 B,AB所在的局域网都分别通过一个路由器接入互联网.互联网上有一台服 ...

  4. 使用.NET中的XML注释(二) -- 创建帮助文档入门篇

    一.摘要 在本系列的第一篇文章介绍了.NET中XML注释的用途, 本篇文章将讲解如何使用XML注释生成与MSDN一样的帮助文件.主要介绍NDoc的继承者:SandCastle. 二.背景 要生成帮助文 ...

  5. 笔记:加 ly 不一定是副词

    笔记:加 ly 不一定是副词 加 ly 变副词,但有些单词以 ly 结尾,长得像副词,却是形容词. costly = cost + ly a costly item. 一件昂贵的物品. lovely ...

  6. Spring基础知识之装配Bean

    装配(wiring):创建应用对象之间协作关系的行为.这是依赖注入的本质. Spring配置的可选方案 Spring提供了三种装配机智: 1)在XML中进行显示装配 2)在java中进行显示装配 3) ...

  7. StringBuilder、StringBuffer、String区别

          相信大家对 String 和 StringBuffer 的区别也已经很了解了,但是估计还是会有很多同志对这两个类的工作原理有些不清楚的地方,今天重新把这个概念给大家复习一下,顺便牵出 J2 ...

  8. Xcode工具特性

    1.注释 #pragma mark 注释说明#pragma mark - 分类/分组注释说明 2.自定义代码块. 3.多文本编辑框 View>>Assistant Editor

  9. JQ选择器大全

    jQuery 的选择器可谓之强大无比,这里简单地总结一下常用的元素查找方法 $("#myELement") 选择id值等于myElement的元素,id值不能重复在文档中只能有一个 ...

  10. Django基础(三)

    Template 不能直接将html硬编码到视图里的原因: 对页面设计进行的任何改变都必须对python 代码进行相应的修改.站点设计的修改往往比底层python 代码的修改要频繁的多,因此如果可以在 ...