Luogu 1314 [NOIP2011] 聪明的质监员
二分答案 + 前缀和。
题面中式子的意思是每一个区间$[l, r]$的贡献是这个区间内$w_i \geq W$的个数乘以这些$i$的$v_i$和。
很快发现了答案具有单调性,可以做两遍二分,分别看看小于$S$的值最大能取到多少以及大于$S$的最小能取到多少,然后取个$min$。
思考一下怎么判定,查询一个区间内比一个数大的数的个数和权值和,莫不是主席树???
被$dalao$$D$了,只要每一次都算一遍前缀和就好了,如果$w_i \geq W$就把$i$和$v_i$计入贡献,查询是$O(1)$的。
时间复杂度$O(nlogn)$。
如果是主席树还多一个$log$。
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 2e5 + ;
const int Maxn = 1e6 + ;
const ll inf = 1LL << ; int n, m, w[N], sumCnt[N];
ll cur, v[N], sumVal[N]; struct Segment {
int l, r;
} seg[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline ll solve(int mid) {
sumCnt[] = , sumVal[] = 0LL;
for(int i = ; i <= n; i++) {
sumCnt[i] = sumCnt[i - ], sumVal[i] = sumVal[i - ];
if(w[i] >= mid) ++sumCnt[i], sumVal[i] += v[i];
} ll res = 0LL;
for(int i = ; i <= m; i++)
res += 1LL * (sumCnt[seg[i].r] - sumCnt[seg[i].l - ]) * (sumVal[seg[i].r] - sumVal[seg[i].l - ]); return res;
} int main() {
read(n), read(m), read(cur);
for(int i = ; i <= n; i++)
read(w[i]), read(v[i]);
for(int i = ; i <= m; i++)
read(seg[i].l), read(seg[i].r); int ln = , rn = Maxn, mid, res = ;
for(; ln <= rn; ) {
mid = (ln + rn) / ;
if(solve(mid) <= cur) rn = mid - , res = mid;
else ln = mid + ;
} ll tmp = solve(res), ans = cur - tmp;
ln = , rn = Maxn, res = Maxn;
for(; ln <= rn; ) {
mid = (ln + rn) / ;
if(solve(mid) >= cur) ln = mid + , res = mid;
else rn = mid - ;
} tmp = solve(res);
if(tmp - cur < ans) ans = tmp - cur; printf("%lld\n", ans);
return ;
}
Luogu 1314 [NOIP2011] 聪明的质监员的更多相关文章
- NOIP2011聪明的质监员题解
631. [NOIP2011] 聪明的质监员 ★★ 输入文件:qc.in 输出文件:qc.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] 小 T 是一名质量监督 ...
- NC16597 [NOIP2011]聪明的质监员
NC16597 [NOIP2011]聪明的质监员 题目 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 \(n\) 个矿石,从 \(1\) 到 \(n\) 逐一编号,每个矿 ...
- 【洛谷P1314】[NOIP2011]聪明的质监员
聪明的质监员 题目链接:https://www.luogu.org/problemnew/show/P1314 Y(W)随W的值增大而减小 二分W的值,找到最小的W使得Y(W)>S: 比较Y(W ...
- [NOIP2011]聪明的质监员 题解
题目大意: 额--貌似蛮清晰的,就不赘述了. 思路: 首先不难发现M越大Y越小,因此可以二分答案(方向不要弄错),二分出最小的不小于S的Y即可.而计算Y时可用前缀和O(n+m)求得.两种边界情况也要考 ...
- NOIP2011 聪明的质监员
描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li ...
- [NOIP2011] 聪明的质监员 二分+前缀和
考试的时候打的二分但没有用前缀和维护.但是有个小细节手误打错了结果挂掉了. 绝对值的话可能会想到三分,但是注意到w增大的时候y是减小的,所以单调性很明显,用二分就可以.但注意一个问题,就是二分最后的结 ...
- 题解【洛谷P1314】[NOIP2011]聪明的质监员
题面 题解 不难发现,\(W\)增大时,\(Y\)值会随之减小. 于是考虑二分\(W\). 如何\(\mathcal{O}(N)check?\) 每一次前缀和记录一下\(1-i\)之间\(w_i \g ...
- Luogu P1314 [NOIP2011 提高组] 聪明的质监员
P1314 [NOIP2011 提高组] 聪明的质监员 题意 题目描述 给定\(n\)个物品,给定每个物品的 重量 \(w_i\) 和 价值 \(v_i\) 给定一个标准值 \(s\) 以及一个参数 ...
- NOIP2011提高组 聪明的质监员 -SilverN
题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[L ...
随机推荐
- 《深入理解 C# 第2版》 - 书摘精要
(P13) 在很大程度上,C# 2 更像是对 C# 1 的各种不足之处的修修补补,所以并没有一鸣惊人.而 C# 3 中几乎所有特性都是为了构建 LINQ,并且其结果也十分特别: (P24) 为了让委托 ...
- MBA 工商管理课程-风险型决策方法
(二)风险型决策方法 适用的条件 未来情况不止一种,管理者不知道到底哪种情况会发生,但知道每种情况发生的概率 常用方法: ...
- zoj1967 poj2570 Fiber Network (floyd算法)
虽然不是最短路,但是询问时任意两点之间的信息都要知道才能回答,由此联想到floyd算法,只要都floyd算法的原理理解清楚了就会发现:这道题的思想和求任意两点之间的最短路的一样的,只不过是更新的信息不 ...
- Codeforces Round #271 (Div. 2)D(递推,前缀和)
很简单的递推题.d[n]=d[n-1]+d[n-k] 注意每次输入a和b时,如果每次都累加,就做了很多重复性工作,会超时. 所以用预处理前缀和来解决重复累加问题. 最后一个细节坑了我多次: print ...
- tensorflow 学习笔记-1
http://www.jianshu.com/p/e112012a4b2d 参考的网站 -------------------------------------------------------- ...
- 循环比赛日程表(match)(分治)
[问题描述] 设有N个选手进行循环比赛,其中N=2M,要求每名选手要与其他N-1名选手都赛一次,每名选手每天比赛一次,循环赛共进行N-1天,要求每天没有选手轮空. 输入:M 输 ...
- Oracl使用总结二
1.ORA-00972: 标识符过长 错误排除 可能原因: 1.如果是拼接成的sql语句,请查找传递参数时字符型字段是否两边少了引号.2.数据库表名太长了,附各种类型的数据库表名长度: SQLSERV ...
- 基于springboot+kotlin+gradle构建的框架的坑
项目采用以上技术构建,于是本人就尝试构建自己的脚手架,然后遇到一大推问题. 使用的是springinitials构建,IDE是:IDEA 现在也是知其然不知其所以然,但是先记录下来修改过程,以后等知识 ...
- 基于JDK1.7.0_80与JDK1.8.0_66做的分析
JDK1.7中 使用一个Entry数组来存储数据,用key的hashcode取模来决定key会被放到数组里的位置,如果hashcode相同,或者hashcode取模后的结果相同(hash collis ...
- Java并发 两个线程交替执行和死锁
今天看到一个题:两个线程交替打印奇数和偶数,即一个线程打印奇数,另一个打印偶数,交替打印从1到100.想了下有多重实现方法. wait和notify方法: public class OddEven { ...