双倍经验

写这两题之前被大佬剧透了呜呜呜。

分层图+最短路。

因为有$k$次机会能够把路径的费用变为$0$,我们可以建$k + 1$层图,对于每一层图我们把原来的边权和双向边连到上面去,而对于层与层之间的连接,对于每一条边,我们连上从下层到上层的有向边,边权为$0$。

这样子其实保证了它并不会向下走,也就是说一定在不断消耗着$k$次机会,对应了使用不超过$k$次机会,这样子的话我们最后只要求出第一层的$st$到第$k + 1$层的$ed$之间的最短路就是答案了。

我使用的是堆优化dijkstra。

时间复杂度$O(nlogn)$,这里的$n$应是$nk$级别的。

Code:

#include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
using namespace std;
typedef pair <int, int> pin; const int N = 4e5 + ;
const int M = 3e6 + ; int n, m, K, tot = , head[N], dis[N];
bool vis[N]; struct Edge {
int to, nxt, val;
} e[M << ]; inline void add(int from, int to, int val) {
e[++tot].to = to;
e[tot].val = val;
e[tot].nxt = head[from];
head[from] = tot;
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline int id(int depth, int now) {
return n * (depth - ) + now;
} priority_queue <pin> Q;
void dij(int st) {
memset(dis, 0x3f, sizeof(dis));
memset(vis, , sizeof(vis));
Q.push(pin(dis[st] = , st)); for(; !Q.empty(); ) {
int x = Q.top().second; Q.pop();
if(vis[x]) continue;
vis[x] = ;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(dis[y] > dis[x] + e[i].val) {
dis[y] = dis[x] + e[i].val;
Q.push(pin(-dis[y], y));
}
}
}
} int main() {
// freopen("testdata.in", "r", stdin); read(n), read(m), read(K); int st, ed; st = , ed = n;
st = id(, st), ed = id(K + , ed); for(int x, y, v, i = ; i <= m; i++) {
read(x), read(y), read(v);
for(int j = ; j <= K + ; j++)
add(id(j, x), id(j, y), v), add(id(j, y), id(j, x), v);
for(int j = ; j <= K; j++)
add(id(j, x), id(j + , y), ), add(id(j, y), id(j + , x), );
} dij(st); printf("%d\n", dis[ed]);
return ;
}

Luogu 2939

#include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
using namespace std;
typedef pair <int, int> pin; const int N = 2e5 + ;
const int M = 3e6 + ; int n, m, K, tot = , head[N], dis[N];
bool vis[N]; struct Edge {
int to, nxt, val;
} e[M << ]; inline void add(int from, int to, int val) {
e[++tot].to = to;
e[tot].val = val;
e[tot].nxt = head[from];
head[from] = tot;
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline int id(int depth, int now) {
return n * (depth - ) + now;
} priority_queue <pin> Q;
void dij(int st) {
memset(dis, 0x3f, sizeof(dis));
memset(vis, , sizeof(vis));
Q.push(pin(dis[st] = , st)); for(; !Q.empty(); ) {
int x = Q.top().second; Q.pop();
if(vis[x]) continue;
vis[x] = ;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(dis[y] > dis[x] + e[i].val) {
dis[y] = dis[x] + e[i].val;
Q.push(pin(-dis[y], y));
}
}
}
} int main() {
read(n), read(m), read(K); int st, ed; read(st), read(ed);
st = id(, st + ), ed = id(K + , ed + ); for(int x, y, v, i = ; i <= m; i++) {
read(x), read(y), read(v);
x++, y++;
for(int j = ; j <= K + ; j++)
add(id(j, x), id(j, y), v), add(id(j, y), id(j, x), v);
for(int j = ; j <= K; j++)
add(id(j, x), id(j + , y), ), add(id(j, y), id(j + , x), );
} dij(st); printf("%d\n", dis[ed]);
return ;
}

Luogu 4568

Luogu 2939 [USACO09FEB]改造路Revamping Trails && Luogu 4568 [JLOI2011]飞行路线的更多相关文章

  1. 【luogu P2939 [USACO09FEB]改造路Revamping Trails】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2939 本来说是双倍经验题,跟飞行路线一样的,结果我飞行路线拿deque优化SPFA过了这里过不了了. 所以多 ...

  2. LUOGU P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

  3. P2939 [USACO09FEB]改造路Revamping Trails

    P2939 [USACO09FEB]改造路Revamping Trails 同bzoj2763.不过dbzoj太慢了,bzoj又交不了. 裸的分层图最短路. f[i][j]表示免费走了j条路到达i的最 ...

  4. 洛谷 P2939 [USACO09FEB]改造路Revamping Trails 题解

    P2939 [USACO09FEB]改造路Revamping Trails 题目描述 Farmer John dutifully checks on the cows every day. He tr ...

  5. [USACO09FEB] 改造路Revamping Trails | [JLOI2011] 飞行路线

    题目链接: 改造路 飞行路线 其实这两道题基本上是一样的,就是分层图的套路题. 为什么是分层图呢?首先,我们的选择次数比较少,可以把这几层的图建出来而不会爆空间.然后因为选择一个边权为0的路线之后我们 ...

  6. [USACO09FEB]改造路Revamping Trails 分层最短路 Dijkstra BZOJ 1579

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

  7. 洛谷P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有\(N\))个牧场.由\(M\)条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场\(1\)出发到牧场\(N\)去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰 ...

  8. 洛谷 P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

  9. [USACO09FEB]改造路Revamping Trails

    题目描述 Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= ...

随机推荐

  1. How to install php 7.x on CentOS 7

    Step 1: Setup the Webtatic YUM repo Precompiled PHP 7.x binaries are available for CentOS 7 from the ...

  2. 如何使用FlashFXP上传网站程序?

    查看ftp信息 [登陆,www.jinlida.cn ,单击主机管理,即可看到ftp主机地址,ftp账号和密码,注意ftp端口号] 1.请先下载并安装FlashFXP_4.1.8.1700-Speci ...

  3. C程序设计语言阅读笔记

    预处理器 ->.i  编译器 >.s 汇编器 >.o 链接器  --可执行文件   ------------------ math.h头文件包含各种数学函数的声明,所有函数都返回一个 ...

  4. Storm的并行度、Grouping策略以及消息可靠处理机制简介

    转自:https://my.oschina.net/zc741520/blog/409949 概念: Workers (JVMs): 在一个节点上可以运行一个或多个独立的JVM 进程.一个Topolo ...

  5. ACM学习历程—HDU5666 Segment(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5666 这题的关键是q为质数,不妨设线段上点(x0, y0),则x0+y0=q. 那么直线方程则为y = y0/x ...

  6. MLCC 电容的的 NP0 C0G 材质

    MLCC 电容的的 NP0 C0G 材质 随手记一下. MLCC 中最稳定的材质 NP0 C0G,NP0 和 C0G 是相同的,只是不同的产商不同的名字而已. 注意中间的是 0 不是 英文字母 O,虽 ...

  7. CentOS7 yum安装mysql5.5/5.6并初始化

    https://blog.csdn.net/petrel2015/article/details/78822466 下载MySQL yum仓库文件 首先根据官网给出的建议,下载MySQL的仓库文件 h ...

  8. POJ2777(线段树涂色问题)

    Count Color Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 42828   Accepted: 12973 Des ...

  9. tree指令

    tree 中文解释:tree功能说明:以树状图列出目录的内容.语 法:tree [-aACdDfFgilnNpqstux][-I <范本样式>][-P <范本样式>][目录.. ...

  10. AngularJS:API

    ylbtech-AngularJS:API 1.返回顶部 1. AngularJS API API 意为 Application Programming Interface(应用程序编程接口). An ...