kaggle Titanic
# coding: utf-8 # In[19]: # 0.78468 # In[20]: import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
from sklearn import preprocessing # In[21]: train_path = r'C:\Users\cbattle\Desktop\train.csv' # r'/home/adminn/桌面/train.csv'
test_path = r'C:\Users\cbattle\Desktop\test.csv' # r'/home/adminn/桌面/test.csv'
out_path = r'C:\Users\cbattle\Desktop\out.csv' # r'/home/adminn/桌面/out.csv' train = pd.read_csv(train_path)
test = pd.read_csv(test_path) print('train:',train.shape)
print('test:',test.shape)
# train.info()
# test.info()
# print(train.head()) # 属性列
# print([col for col in train])
# print([col for col in test]) # 策略
# ['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked']
# drop onehot drop 0/1 num num num drop num 0/1 用S补空,onehot # In[22]: X = train.drop(['Survived','PassengerId','Name'], axis=1)
y = train['Survived']
Xtest = test.drop(['PassengerId','Name'], axis=1)
# print('X:',X.shape)
# print('y:',y.shape)
# print('Xtest:',Xtest.shape) # In[23]: key = [col for col in X if X[col].dtype != 'object' # numberic ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
or col == 'Sex'
or col == 'Embarked'
or col == 'Cabin'
]
X = X[key]
Xtest = Xtest[key]
# print(key) def showNullNum(a,b):
print(a.isnull().sum())
print()
print(b.isnull().sum())
print('------------------------------------') showNullNum(X,Xtest) # Xtest['Fare'][Xtest['Fare'].isnull()] = Xtest['Fare'].median() # replace nan with median
# X = X.dropna(axis=0) # drop X and y in the same row #-------------------------------------------------------------------------------
# Pclass Ticket class
# 1 = 1st, 2 = 2nd, 3 = 3rd onehot
# for i in X['Pclass'].unique():
# X['Pclass_'+str(i)] = (X['Pclass']==i).astype(int)
# Xtest['Pclass_'+str(i)] = (Xtest['Pclass']==i).astype(int) # X = X.drop(['Pclass'],axis=1)
# Xtest = Xtest.drop(['Pclass'],axis=1) #-------------------------------------------------------------------------------
# Sex
X['Sex'] = X['Sex'].apply(lambda i:1 if i=='female' else 0)
Xtest['Sex'] = Xtest['Sex'].apply(lambda i:1 if i=='female' else 0) #-------------------------------------------------------------------------------
# Embarked # 1 label encoding
X['Embarked'][X['Embarked'].isnull()] = 'S'
X['Embarked'] = X['Embarked'].map({'S':0,'C':1,'Q':2}).astype(int)
Xtest['Embarked'] = Xtest['Embarked'].map({'S':0,'C':1,'Q':2}).astype(int)
# or use sklearn.preprocessing.LabelEncoder # print(X.head())
# print(Xtest.head()) # X['Embarked'][X['Embarked'].isnull()] = 'S'
# from sklearn import preprocessing
# le = preprocessing.LabelEncoder()
# X['Embarked'] = le.fit_transform(X['Embarked'])
# Xtest['Embarked'] = le.transform(Xtest['Embarked']) # print(X.head())
# print(Xtest.head()) # 2 onehot
# for i in X['Embarked'].unique():
# print(i, 'sum:', sum(X['Embarked']==i)) # X['Embarked'][X['Embarked'].isnull()] = 'S' # most_frequent
# for i in X['Embarked'].unique():
# X['Embarked_type_'+i] = (X['Embarked']==i).astype(int)
# Xtest['Embarked_type_'+i] = (Xtest['Embarked']==i).astype(int) # X = X.drop(['Embarked'],axis=1)
# Xtest = Xtest.drop(['Embarked'],axis=1)
# print(X.head(10)) #-------------------------------------------------------------------------------
# Cabin
# has a cabin or not
# print(X.head(5))
Xtest['Cabin'] = Xtest['Cabin'].apply(lambda i:1 if isinstance(i,str) else 0)
X['Cabin'] = X['Cabin'].apply(lambda i:1 if isinstance(i,str) else 0)
# print(X.head(5)) #-------------------------------------------------------------------------------
# age and fare
# use median to replace nan
from sklearn.preprocessing import Imputer
ip = Imputer(strategy='median')
X = ip.fit_transform(X)
Xtest = ip.transform(Xtest)
print(np.isnan(X).sum(),np.isnan(Xtest).sum()) # In[24]: from xgboost import XGBClassifier
xgb = XGBClassifier()
xgb.fit(X,y)
ans = xgb.predict(Xtest) # from sklearn.tree import DecisionTreeClassifier
# from sklearn.ensemble import ExtraTreesClassifier
# from sklearn.svm import LinearSVC # In[25]: out = pd.DataFrame({'PassengerId':test['PassengerId'],'Survived':ans})
out.to_csv(out_path,index = False)
print('ok') # In[26]: from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(['a','b','c'])
ans = le.transform(['a','a','c'])
print(ans)
kaggle Titanic的更多相关文章
- kaggle& titanic代码
这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titan ...
- kaggle Titanic心得
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接 ...
- Kaggle:Titanic: Machine Learning from Disaster
一直想着抓取股票的变化,偶然的机会在看股票数据抓取的博客看到了kaggle,然后看了看里面的题,感觉挺新颖的,就试了试. 题目如图:给了一个train.csv,现在预测test.csv里面的Passa ...
- Kaggle Titanic补充篇
1.关于年龄Age 除了利用平均数来填充,还可以利用正态分布得到一些随机数来填充,首先得到已知年龄的平均数mean和方差std,然后生成[ mean-std, mean+std ]之间的随机数,然后 ...
- Kaggle Titanic solution 纯规则学习
其实就是把train.csv拿出来看了看,找了找规律,调了调参数而已. 找到如下规律: 1.男的容易死,女的容易活 2.一等舱活,三等舱死 3.老人死,小孩活 4.兄弟姐妹多者死 5.票价高的活 6. ...
- 逻辑回归应用之Kaggle泰坦尼克之灾(转)
正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas ...
- Kaggle 泰坦尼克
入门kaggle,开始机器学习应用之旅. 参看一些入门的博客,感觉pandas,sklearn需要熟练掌握,同时也学到了一些很有用的tricks,包括数据分析和机器学习的知识点.下面记录一些有趣的数据 ...
- Survival on the Titanic (泰坦尼克号生存预测)
>> Score 最近用随机森林玩了 Kaggle 的泰坦尼克号项目,顺便记录一下. Kaggle - Titanic: Machine Learning from Disaster On ...
- 机器学习案例学习【每周一例】之 Titanic: Machine Learning from Disaster
下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模 ...
随机推荐
- 《Javascript高级程序设计》阅读记录(二):第四章
这个系列之前文字地址:http://www.cnblogs.com/qixinbo/p/6984374.html 这个系列,我会把阅读<Javascript高级程序设计>之后,感觉讲的比较 ...
- 内存优化总结:ptmalloc、tcmalloc和jemalloc
概述 需求 系统的物理内存是有限的,而对内存的需求是变化的, 程序的动态性越强,内存管理就越重要,选择合适的内存管理算法会带来明显的性能提升.比如nginx, 它在每个连接accept后会malloc ...
- BZOJ2724:[Violet 6]蒲公英
浅谈分块:https://www.cnblogs.com/AKMer/p/10369816.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?i ...
- JavaScript实现继承的几种重要范式
一 原型链 1. 代码示例 function SuperType() { this.superProperty = true; } SuperType.prototype.getSuperValue ...
- mongo之map-reduce笔记
package com.sy.demo; import com.mongodb.MongoClient; import com.mongodb.client.FindIterable; import ...
- 把python2.6升级到python2.7(同样适用于把python2升级到python3)
在启用https过程中,在生成CSR(证书请求文件)时,报错了,说python2.6已被python团队抛弃了,所以升级python到2.7 话不多说,直接上代码: 步骤1:下载python2.7.1 ...
- 蓝桥杯 算法训练 ALGO-120 学做菜
算法训练 学做菜 时间限制:1.0s 内存限制:256.0MB 问题描述 涛涛立志要做新好青年,他最近在学做菜.由于技术还很生疏,他只会用鸡蛋,西红柿,鸡丁,辣酱这四种原料来做菜,我们给这四种 ...
- (转)在Windows平台上安装Node.js及NPM模块管理
本文转载自:http://www.cnblogs.com/seanlv/archive/2011/11/22/2258716.html 之前9月份的时候我写了一篇关于如何在Windows平台上手工管理 ...
- zedgraph控件的一些比较有用的属性
(1)zedgraph控件属性具体解释: AxisChange()() ->> This performs an axis change command on the graphPane. ...
- C# Lambda快速深度拷贝
背景:今天上班在班车上和一个同事讨论有关C#拷贝效率的问题,聊到了多种深度拷贝方法,其中就提到了一种Lambda表达式拷贝的方法,这位同事说这种深度拷贝快是快但是如果对象里面再嵌入对象就不能深度拷贝了 ...