传送门

我不管我不管我就是要用莫队

直接用莫队裸上

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
int cnt[N],a[N],rt[N],l,r,n,m,k,s,ans[N],ansn;
struct node{
int l,r,id;
}q[N];
inline bool cmp(node a,node b){
return rt[a.l]==rt[b.l]?rt[a.l]&?a.r<b.r:a.r>b.r:a.l<b.l;
}
inline void add(int x){
++cnt[x];
if(cnt[x]==) ++ansn;
}
inline void del(int x){
--cnt[x];
if(cnt[x]==) --ansn;
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),m=read(),s=sqrt(n);
for(int i=;i<=n;++i) a[i]=read(),rt[i]=(i-)/s+;
for(int i=;i<=m;++i)
q[i].l=read(),q[i].r=read(),q[i].id=i;
sort(q+,q++m,cmp);
l=,r=;
for(int i=;i<=m;++i){
while(l>q[i].l) add(a[--l]);
while(r<q[i].r) add(a[++r]);
while(l<q[i].l) del(a[l++]);
while(r>q[i].r) del(a[r--]);
ans[q[i].id]=ansn;
}
for(int i=;i<=m;++i) puts(ans[i]?"No":"Yes");
return ;
}

洛谷P3901 数列找不同(莫队)的更多相关文章

  1. 洛谷P3901 数列找不同 [莫队]

    题目传送门 题目描述 现有数列 A_1,A_2,\cdots,A_NA1​,A2​,⋯,AN​ ,Q 个询问 (L_i,R_i)(Li​,Ri​) , A_{Li} ,A_{Li+1},\cdots, ...

  2. 洛谷P3901 数列找不同(莫队水题)

    重温下手感,判断区间是否全是不同的数字有两种做法,一个长度为len的区间不同的数字,参见HH的项链,一种是区间众数,参见蒲公英,是水题没错了.明天搞数据库,然后继续自己的gre和训练计划 #inclu ...

  3. 洛谷 P3901 数列找不同(莫队)

    题目链接:https://www.luogu.com.cn/problem/P3901 这道题简单莫队模板题,然后$add$和$del$分别处理$vis[]$从$0-->1$和从$1--> ...

  4. 【刷题】洛谷 P3901 数列找不同

    题目描述 现有数列 \(A_1,A_2,\cdots,A_N\) ,Q 个询问 \((L_i,R_i)\) , \(A_{Li} ,A_{Li+1},\cdots,A_{Ri}\) 是否互不相同 输入 ...

  5. Bzoj2120/洛谷P1903 数颜色(莫队)

    题面 Bzoj 洛谷 题解 考虑对操作离线后分块处理询问操作(莫队算法),将询问操作按照编号分块后左端点第一关键字,右端点第二关键字排序(分块大小为\(n^{\frac 23}\)),对于每一个询问操 ...

  6. luogu 数列找不同-莫队

    https://www.luogu.org/problemnew/show/P3901 了解过莫队的人应该都清楚,莫队是一个优化的暴力,可以在相对暴力比较优的时间中,求出一段序列内的某些性质(例:数字 ...

  7. 洛谷P3245 [HNOI2016]大数 【莫队】

    题目 题解 除了\(5\)和\(2\) 后缀数字对\(P\)取模意义下,两个位置相减如果为\(0\),那么对应子串即为\(P\)的倍数 只用对区间种相同数个数\(x\)贡献\({x \choose 2 ...

  8. 洛谷 P4887 -【模板】莫队二次离线(第十四分块(前体))(莫队二次离线)

    题面传送门 莫队二次离线 mol ban tea,大概是这道题让我第一次听说有这东西? 首先看到这类数数对的问题可以考虑莫队,记 \(S\) 为二进制下有 \(k\) 个 \(1\) 的数集,我们实时 ...

  9. P3901 数列找不同

    P3901 数列找不同 题目描述 现有数列 \(A_1,A_2,\cdots,A_N\) ,Q 个询问 \((L_i,R_i)\) , \(A_{Li} ,A_{Li+1},\cdots,A_{Ri} ...

随机推荐

  1. HTTP-Runoob:HTTP请求头信息

    ylbtech-HTTP-Runoob:HTTP请求头信息 1.返回顶部 1. HTTP 响应头信息 HTTP请求头提供了关于请求,响应或者其他的发送实体的信息. 在本章节中我们将具体来介绍HTTP响 ...

  2. 关于64位操作系统使用C#访问注册表失败的问题

    通过C#的注册表类 Registry.GetValue 进行访问时,其返回值一直为空.然后认真检查检查再检查了注册表路径,发现路径没有一点问题,不说废话,上代码: if (Registry.GetVa ...

  3. PostgreSQL 监控磁盘使用

    监控磁盘使用 1. 判断磁盘用量 每个表都有一个主要的堆磁盘文件,大多数数据都存储在其中.如果一个表有着可能会很宽(尺寸大)的列, 则另外还有一个TOAST文件与这个表相关联, 它用于存储因为太宽而不 ...

  4. Python类(七)-类的特殊成员方法

    __doc__ 用来表示类的描述信息 # -*- coding:utf-8 -*- __author__ = "MuT6 Sch01aR" class Person(object) ...

  5. NSURLConnection基本用法(苹果原生)

    一.NSURLConnection的常用类 (1)NSURL:请求地址 (2)NSURLRequest/NSMutableURLRequest:封装一个请求,保存发给服务器的全部数据,包括一个NSUR ...

  6. android 自定义控件之事件

    首先,继承需要扩展的VIEW,然后在里面添加一个自己的事件方法,例如, oniconclick(myinterface pinterface){ minterface = pinterface; } ...

  7. 3-2 zk客户端连接关闭服务端,查看znode

    使用ZooKeeper官方提供的Client来连接.路径类似的结构. 连接到我们的门户HOST. quota属于zookeeper.quota是子节点,zookeeper是父节点.quota其实是一个 ...

  8. 转:c语言学习笔记 二进制和十进制的互相转化

    http://www.cnblogs.com/xkfz007/articles/2590472.html

  9. PrototypePattern(23种设计模式之一)

    设计模式六大原则(1):单一职责原则 设计模式六大原则(2):里氏替换原则 设计模式六大原则(3):依赖倒置原则 设计模式六大原则(4):接口隔离原则 设计模式六大原则(5):迪米特法则 设计模式六大 ...

  10. Python沙盒环境配置

    一.简介 本文介绍配置python沙盒环境的方法步骤. 二.安装步骤 1.安装pyenv http://www.cnblogs.com/274914765qq/p/4948530.html 2.安装v ...