然后呢这道题其实很简单

我们先考虑一种简单的情况,从1直接走到n(不管怎么走的,反正就是走) 然后就能找到一个路径了

这个走的过程用各种zmj算法都能过

然后呢我们发现如果直接走基本不会得到最优解,考虑模拟退火

考虑增广

一个增广方法是,从某一个点开始走到一个环,在环上走一圈,然后原路返回,如图

然后呢这个图画的有点丑了

我们发现,增广的路径就是环上的路径,往返的路径上两次xor就xor没了,对答案的贡献为0

然后所以我们枚举所有环,把这条环的xor扔进线性基,查询时候直接用1到n的一条路径去查询这个长度被线性基乱搞后的最大值

这题也就蓝题难度吧竟然是黑题

#include <bits/stdc++.h>
using namespace std; struct edge
{
int v;
long long w;
int ne;
}a[200010]; int n, m, tmp;
int h[50010];
long long dis[50010];
bool vis[50010];
long long linear_basis[70]; void add(int u, int v, long long w)
{
a[++tmp] = (edge){v, w, h[u]};
h[u] = tmp;
} bool insert(long long x)
{
for (int i = 63; i >= 0; i--)
{
if (x & (1LL << i))
{
if(linear_basis[i] == 0)
{
linear_basis[i] = x;
return true;
}
x ^= linear_basis[i];
}
}
return false;
} long long query(long long x)
{
for (int i = 63; i >= 0; i--)
if ((x ^ linear_basis[i]) > x)
x ^= linear_basis[i];
return x;
} void search(int x, long long y)
{
dis[x] = y;
vis[x] = 1;
for (int i = h[x]; i != 0; i = a[i].ne)
if (vis[a[i].v] == 0)
search(a[i].v, y ^ a[i].w);
else
insert(y ^ a[i].w ^ dis[a[i].v]);
} int main()
{
scanf("%d%d", &n, &m);
long long z;
for (int x, y, i = 1; i <= m; i++)
{
scanf("%d%d%lld", &x, &y, &z);
add(x, y, z);
add(y, x, z);
}
search(1, 0);
printf("%lld\n", query(dis[n]));
return 0;
}

luogu4151 最大XOR和路径的更多相关文章

  1. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  2. BZOJ2337: [HNOI2011]XOR和路径

    题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...

  3. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  4. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  5. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  6. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

  7. 洛谷 P4151 [WC2011]最大XOR和路径 解题报告

    P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...

  8. [WC2011]最大XOR和路径 线性基

    [WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...

  9. P4151 [WC2011]最大XOR和路径

    P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...

随机推荐

  1. CKEditor 自定义按钮插入服务端图片

    CKEditor 富文本编辑器很好用,功能很强大,在加上支持服务端图片上传的CKFinder更是方便, 最近在使用CKFinder的时候发现存在很多问题,比如上传图片的时候,图片不能按时间降序排列,另 ...

  2. 前端js上传文件后端C#接收文件

    本文粗略的讲下前端文件上传和后端文件接收的原理 前端代码 html <form onsubmit="uploadFile(event)"> <input type ...

  3. 第十一章 Tomcat的系统架构与设计模式(待续)

    Tomcat总体设计 Tomcat中的设计模式

  4. delphi 组件安装工具开发

    当一个组件的dpk文件数量较多且安装工具不顺手的时候,写一个属于自己的组件安装工具就很有必要了. 本例以 Dev Express 16.1.2 为例,设计一个组件安装工具,以便更深入理解 delphi ...

  5. Changing Controller Numbers in Solaris

    If you need to change the controller numbers (c#) that a disk has assigned to it, whether it is for ...

  6. 如何深度优化MySQL内核

    MYSQL数据库适用场景广泛,相较于Oracle.DB2性价比更高,Web网站.日志系统.数据仓库等场景都有MYSQL用武之地,但是也存在对于事务性支持不太好(MySQL 5.5版本开始默认引擎才是I ...

  7. SqlServer——事务—隔离级别

    隔离实际上是通过锁来实现的,作用于整个事务,它通常在事务开始前指定,如 SET TRANSACTION ISOLATION LEVEL READ Committed,指定后面的事务为 已提交读:而锁是 ...

  8. Web Api2 中线程的使用

    System.Threading.Thread th = new System.Threading.Thread(方法名); th.IsBackground = true; th.Start(); 上 ...

  9. strophe与openfire模拟的XMPP简单hello程序

    /* * 参考<XMPP高级编程+使用JavaScript和jQuery>第三章例子. * 我修改了作者的XMPP服务器到本地的openfire.JavaScript跨域请求,使用Ngin ...

  10. dos 下bat命令

    注:cmd下    help > result.txt assoc 显示或修改文件扩展名关联. attrib 显示或更改文件属性. break 设置或清除扩展式 ctrl+c 检查. bcded ...