题目描述

Yasuo 和Riven对一排\(n\)个假人开始练习。斩杀第\(i\)个假人会得到\(c_i\)个精粹。双方轮流出招,他们在练习中互相学习,所以他们的剑术越来越强。基于对方上一次斩杀的假人数量\(k\),可以斩杀掉剩余假人中位置最靠前的\([1,2k]\)范围内数量的连续假人。最初Yasuo先出招,斩杀\(1\)或\(2\)个假人。Yasuo偷偷把你叫到一边,问在双方都采取最优策略的情况下, 他最多能够获取多少精粹。

输入

第一行一个正整数\(n\),表示假人的个数。

接下来\(n\)行,每行一个正整数\(c_i\)表示斩杀每个假人获得的精粹数。

输出

一个正整数表示 Yasuo 能够得到的最大精粹数量。

样例输入

5
1
3
1
7
2

样例输出

9

样例解释

Yasuo 斩\(1\)号,Riven 斩\(2\)号,Yasuo 斩\(3,4\)号,Riven 斩\(5\)号。

数据范围

对于前\(10\%\)的数据,\(n \leq 10\)

对于前\(40\%\)的数据,\(n \leq 500\)

对于\(100\%\)的数据,\(5 \leq n \leq 5000, ci \leq 10^9\)

题解

首先,吐槽题目背景,并吐槽搬题并魔改的出题人。

简单博弈论\(DP\),几乎不怎么涉及博弈论的知识。

显然两人其实是等价的,设\(f[i][j]\)表示现在剩下末尾的\(i\)个假人,最后一刀是砍了\(j\)个假人,能得到的最大值。显然我们可以枚举下一刀砍了多少人\(k\in[1,2j]\),\(DP\)状态的转移就会非常简单。但很遗憾,这样的复杂度是\(O(n^3)\),并不能通过所有测试点。

考虑优化,我们把\(DP\)式子写下来吧:

\(f[i][j] = max(s[i]-f[i-k][k])\),其中\(k\in[1,2j]\),\(s[i]\)表示后\(i\)个人的\(c\)之和。

化一下式子:

\(f[i][j] = max(f[i][j-1],s[i]-f[i-2j][2j],s[i]-f[i-2j+1][2j-1])\)

然后就没了……

\(Code:\)

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define N 5005
#define ll long long
#define inf (1ll << 50)
template<typename Mytype>void Read(Mytype &p)
{
p = 0;
char c = getchar();
for (; c < '0' || c > '9'; c = getchar());
for (; c >= '0' && c <= '9'; c = getchar())p = p * 10 + c - '0';
}
ll s[N];
ll f[5005][5005];
int n, A[N];
int main()
{
Read(n);
for (int i = 1; i <= n; i++)
Read(A[i]), s[n - i + 1] = A[i];
for (int i = 1; i <= n; i++)
s[i] += s[i - 1];
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
ll ans1 = -inf, ans2 = -inf;
if (i >= (2 * j - 1))
ans1 = s[i] - f[i - (2 * j - 1)][2 * j - 1];
if (i >= (2 * j))
ans2 = s[i] - f[i - 2 * j][2 * j];
f[i][j] = max(max(ans1, ans2), f[i][j - 1]);
}
}
printf("%lld\n", f[n][1]);
}

「模拟赛20181025」御风剑术 博弈论+DP简单优化的更多相关文章

  1. 「模拟赛20190327」 第二题 DP+决策单调性优化

    题目描述 小火车虽然很穷,但是他还是得送礼物给妹子,所以他前往了二次元寻找不需要钱的礼物. 小火车准备玩玩二次元的游戏,游戏当然是在一个二维网格中展开的,网格大小是\(n\times m\)的,某些格 ...

  2. 「模拟赛20180306」回忆树 memory LCA+KMP+AC自动机+树状数组

    题目描述 回忆树是一棵树,树边上有小写字母. 一次回忆是这样的:你想起过往,触及心底--唔,不对,我们要说题目. 这题中我们认为回忆是这样的:给定 \(2\) 个点 \(u,v\) (\(u\) 可能 ...

  3. 「模拟赛20180406」膜树 prufer编码+概率

    题目描述 给定一个完全图,保证\(w_{u,v}=w_{v,u}\)且\(w_{u,u}=0\),等概率选取一个随机生成树,对于每一对\((u,v)\),求\(dis(u,v)\)的期望值对\(998 ...

  4. 「模拟赛20180307」三元组 exclaim 枚举+树状数组

    题目描述 给定 \(n,k\) ,求有多少个三元组 \((a,b,c)\) 满足 \(1≤a≤b≤c≤n\)且\(a + b^2 ≡ c^3\ (mod\ k)\). 输入 多组数据,第一行数据组数\ ...

  5. 「模拟赛20191019」C 推式子+贪心+树状数组

    题目描述 给定一棵\(n\)个点的有根树,根节点编号为\(1\),点有点权. 定义\(d(v)\)表示\(v\)到\(1\)的路径上的边数. 定义\(f(v,u)\)在\(v<u\)且\(v\) ...

  6. 「模拟赛20191019」B 容斥原理+DP计数

    题目描述 将\(n\times n\)的网格黑白染色,使得不存在任意一行.任意一列.任意一条大对角线的所有格子同色,求方案数对\(998244353\)取模的结果. 输入 一行一个整数\(n\). 输 ...

  7. 「模拟赛20191019」A 简单DP

    题目描述 给一个\(n\times m\)的网格,每个格子上有一个小写字母. 对于所有从左上角\((1,1)\)到右下角\((n,m)\)只向下或向右走的路径构成的集合,判断是否存在两条走法不同的路径 ...

  8. 「模拟赛 2018-11-02」T3 老大 解题报告

    老大 题目描述 因为 OB 今年拿下 4 块金牌,学校赞助扩建劳模办公室为劳模办公室群,为了体现 OI 的特色,办公室群被设计成了树形(n 个点 n − 1 条边的无向连通图),由于新建的办公室太大以 ...

  9. 【noip模拟赛5】细菌 状压dp

    [noip模拟赛5]细菌   描述 近期,农场出现了D(1<=D<=15)种细菌.John要从他的 N(1<=N<=1,000)头奶牛中尽可能多地选些产奶.但是如果选中的奶牛携 ...

随机推荐

  1. C# Math.Round

    不能直接调用Math.Round方法的,这可和Java的不一样哦Math.Round这个函数的解释是将值按指定的小数位数舍入,并不就是四舍五入.这种舍入有时称为就近舍入或四舍六入五成双 C# code ...

  2. Java 的编译和运行机制

    创建一个 名为 test.java 的 Java 源文件 源代码: class Hello{ public static void main(String[] args) { System.out.p ...

  3. Solaris10上如何识别新增加的HDLM LUN

    先在磁盘阵列上将新加LUN映射给主机组,然后在光纤交换机上增加相关zone信息.以下是Solaris10上需要执行的操作步骤. 在Solaris10上重新扫描磁盘 -bash-3.2# cfgadm ...

  4. Java堆初始大小的建议值

    摘自:<Java Performance>第三章 Initial Heap Space Size Configuration This section describes how to u ...

  5. 问题:oracle DECLARE 变量重复利用;结果:Oracle 定义变量总结

    首先,当在cmd里办入scott密码提示错误时,可以这样改一下,scott的解锁命令是: 以system用户登录:cmdsqlplus system/tigertigeralter user scot ...

  6. centos7虚拟机桥接上网(DHCP)

    centos设置成自动获取ip地址方式(DHCP) 1.打开终端查看网卡信息 #ifconfigifcfg-enp0s3lovirbro 2.编辑文件#vim /etc/sysconfig/netwo ...

  7. 【整理】使用AIDL跨进程传递复杂对象的实践例子

    首先定义对象类,并实现Parcelable接口,实现接口内的几个方法,看代码,Person.java package com.example.u3.aidltest; import android.o ...

  8. ElasticSearch入门一

    ElasticSearch入门一 1 安装ElasticSearch,配置环境变量,并且存在Java环境,而且是Java环境: 下图是安装的目录: 进入bin目录之后,请看bin目录: 启动elast ...

  9. cocos2d中setBlendFunc设置颜色混合方案

    CCSprite有一个ccBlendFunc类型的blendFunc_结构体成员,可以用来设置描绘时的颜色混合方案.ccBlendFunc包含了一个src和一个dst,分别表示源和目标的运算因子. 如 ...

  10. 九款常用的JS代码高亮工具

    代码高亮很重要,特别是当我们想要在网站或博客中展示我们的代码的时候.通过在网站或博客中启用代码高亮,读者更方便的读取代码块. 有很多免费而且有用的代码高亮脚本.这些脚本大部分由Javascripts编 ...