◇例题·II◇ Berland and the Shortest Paths

题目来源:Codeforce 1005F +传送门+


◆ 简单题意

给定一个n个点、m条边的无向图。保证图是连通的,且m≥n-1。

以首都(1节点)为根节点生成最小树。树的值定义为每个节点的深度和(根节点深度0)。举个例子:

而我们知道,可能有多种情况使树的权值最小,题目给出了一个整数k,如果最小树的生成方案数为ans,当 ans≤k 时,将 ans 种方案全部输出;当 ans>k 时,任意输出 k 种不同生成方案即可。输出方案格式为一个01串,第i个字符如果为0,表示不选第i条边(按照输入顺序),1为选择第i条边。


◆ 解析

其实点 i 的深度 dep[i] 就是根节点1到 i 的路径,而我们知道 1 到 i 没有任何一条路径短于它们的最短路径,所以生成树的权值最小时,根节点到每个点的距离就是原图中根节点到每个节点的最短路径。也就是说,我们生成的最小树就是一个最短路径树。然而显然有时候存在多条最短路径,这也就造成了我们生成的最小树有多种解。于是我们假装生成一棵树,实际上只是生成一个图。

由于这道题的边权都是等价的(不如就把边权看成1吧),我们可以用BFS直接求得最短路,所以说其实这也是一个BFS序图。为了考虑每种情况,我们把所有最小的BFS序边连上。下面再举一个生成BFS序图的例子(希望入门reader可以理解):

这样我们就生成了一个BFS序有根图,由于我们要生成树,而树的每一个节点的父节点少于一个。在上图中,4的父节点有两个,因此需要断开一条边——两条边是等价的,断掉任意一条即可。

我们可以把 u→v 的边存入v的边集 min_edg[v] ,那么最小权值树则是对于每一个除根节点之外的 v,选择 min_edg[v] 中的任意一条边,所以方案总数为 (除去根节点 i:2~n)min_edg[v]的边数之积。最后再DFS递归求方案即可(具体见代码)。


◆ 源代码

 /*Lucky_Glass*/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int MAXN=int(2e5);
const int INF=int(1e9);
int n_pnt,n_edg,k;
int dis[MAXN+];
vector<pair<int,int> > lnk[MAXN+];
vector<pair<int,int> > min_edg[MAXN+];
void BFS(int start)
{
fill(dis,dis+MAXN+,INF);
dis[start]=;
queue<int> que;
que.push(start);
while(!que.empty())
{
int u=que.front();que.pop();
for(int i=;i<lnk[u].size();i++)
{
int v=lnk[u][i].first,id=lnk[u][i].second,Stp=dis[u]+;
if(Stp>dis[v]) continue;
min_edg[v].push_back(make_pair(u,id));
if(Stp!=dis[v])
dis[v]=Stp,que.push(v);
}
}
}
bool chose[MAXN+];int cnt;
void DFS(int v)
{
if(v==n_pnt+)
{
cnt++;
for(int i=;i<=n_edg;i++)
printf("%d",chose[i]);
printf("\n");
return;
}
for(int i=;i<min_edg[v].size();i++)
{
chose[min_edg[v][i].second]=true;
DFS(v+);
chose[min_edg[v][i].second]=false;
if(cnt==k) return;
}
}
int main()
{
scanf("%d%d%d",&n_pnt,&n_edg,&k);
for(int i=,u,v;i<n_edg;i++)
scanf("%d%d",&u,&v),
lnk[u].push_back(make_pair(v,i+)),
lnk[v].push_back(make_pair(u,i+));
BFS();
long long ans=;
for(int i=;i<=n_pnt;i++)
{
ans*=min_edg[i].size();
if(ans>k) break;
}
printf("%lld\n",min(k*1ll,ans));
DFS();
return ;
}

The End

Thanks for reading!

- Lucky_Glass

(Tab:如果我有没讲清楚的地方可以直接在邮箱lucky_glass@foxmail.com email我,在周末我会尽量解答并完善博客~)

【例题收藏】◇例题·II◇ Berland and the Shortest Paths的更多相关文章

  1. Codeforces 1005 F - Berland and the Shortest Paths

    F - Berland and the Shortest Paths 思路: bfs+dfs 首先,bfs找出1到其他点的最短路径大小dis[i] 然后对于2...n中的每个节点u,找到它所能改变的所 ...

  2. Codeforces Round #496 (Div. 3) F - Berland and the Shortest Paths

    F - Berland and the Shortest Paths 思路:还是很好想的,处理出来最短路径图,然后搜k个就好啦. #include<bits/stdc++.h> #defi ...

  3. [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs)

    [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs) 题面 题意:给你一个无向图,1为起点,求生成树让起点到其他个点的距离最小,距离最小 ...

  4. Berland and the Shortest Paths CodeForces - 1005F(最短路树)

    最短路树就是用bfs走一遍就可以了 d[v] = d[u] + 1 表示v是u的前驱边 然后遍历每个结点 存下它的前驱边 再用dfs遍历每个结点 依次取每个结点的某个前驱边即可 #include &l ...

  5. CF1005F Berland and the Shortest Paths

    \(\color{#0066ff}{ 题目描述 }\) 一个无向图(边权为1),输出一下选边的方案使\(\sum d_i\)最小(\(d_i\)为从1到i的最短路) 输出一个方案数和方案(方案数超过k ...

  6. CF1005F Berland and the Shortest Paths (树上构造最短路树)

    题目大意:给你一个边权为$1$的无向图,构造出所有$1$为根的最短路树并输出 性质:单源最短路树上每个点到根的路径 ,一定是这个点到根的最短路之一 边权为$1$,$bfs$出单源最短路,然后构建最短路 ...

  7. CF1005F Berland and the Shortest Paths 最短路树计数

    问题描述 LG-CF1005F 题解 由题面显然可得,所求即最短路树. 所以跑出最短路树,计数,输出方案即可. \(\mathrm{Code}\) #include<bits/stdc++.h& ...

  8. [CF1005F]Berland and the Shortest Paths_最短路树_堆优化dij

    Berland and the Shortest Paths 题目链接:https://www.codeforces.com/contest/1005/problem/F 数据范围:略. 题解: 太鬼 ...

  9. Shortest Paths

    最短路径 APIs 带权有向图中的最短路径,这节讨论从源点(s)到图中其它点的最短路径(single source). Weighted Directed Edge API 需要新的数据类型来表示带权 ...

随机推荐

  1. pat1087. All Roads Lead to Rome (30)

    1087. All Roads Lead to Rome (30) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...

  2. InnoDB还是MyISAM?

    两种类型最主要的差别就是Innodb 支持事务处理与外键和行级锁.而MyISAM不支持.所以MyISAM往往就容易被人认为只适合在小项目中使用. 我作为使用MySQL的用户角度出发,Innodb和My ...

  3. 连接MySql的时候报1130的错误解决办法

    部署了一个 数据库采用Mysql的程序,sqlyog连接非本地的Mysql服务器的数据库,居然无法连接很奇怪,报1130错误,ERROR 1130: Host 192.168.3.100 is not ...

  4. windows无法通过installer安装SVN

    1.当你的电脑是windows xp操作系统的时候在安装TortoiseSVN1.8**版本的时候会出现如下问题造成不能完成安装: 出现“无法通过windowsinstaller服务安装此安装程序包. ...

  5. JS 类似contains方法,用indexOf实现

    js提供了另一个方法indexOf: str.indexOf("substr") != -1; 如果上面这个表达式为true,则包含,反之则不包含.

  6. MySQL(三) 完整性约束

    一.介绍 约束条件与数据类型的宽度意义,都是可选参数. 作用:用于保证数据的完整性和一致性. 主要分为: PRIMARY KEY (PK) 标识该字段为该表的主键,可以唯一的标识记录 FOREIGN ...

  7. Spring aop读写分离

    一.采用读写分离技术的目标 随着网站的业务不断扩展,数据不断增加,用户越来越多,数据库的压力也就越来越大,采用传统的方式,比如:数据库或者SQL的优化基本已达不到要求,这个时候可以采用读写分离的策略来 ...

  8. js-对象的方法详解

    Object.prototype 上的方法: constructor 返回创建该对象的构造函数 var arr = []; arr.constructor == function Array() { ...

  9. CSS透明度设置(兼容性)

    一句话搞定透明背景! .transparent_class { filter:alpha(opacity=50); -moz-opacity:0.5; -khtml-opacity: 0.5; opa ...

  10. CSS 笔记之 CSS 选择器

    /*先设置背景再设置前景*/ pre{ background-color: #f8f8f8; border: solid 1px #ccc; border-radius: 3px; overflow: ...