2152: 聪聪可可

Time Limit: 3 Sec  Memory Limit: 259 MB Submit: 3602  Solved: 1858 [Submit][Status][Discuss]

Description

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。

Input

输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。

Output

以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。

Sample Input

5
1 2 1
1 3 2
1 4 1
2 5 3

Sample Output

13/25
【样例说明】
13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。

【数据规模】
对于100%的数据,n<=20000。

 
 
一眼看树形dp,也可以点分治。
写写点分治……
 
 
 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
struct data
{
int to,next,c;
}e[];
int head[];
int cnt=;
void add(int u,int v,int c){e[cnt].to=v;e[cnt].next=head[u];e[cnt].c=c;head[u]=cnt;cnt++;}
int n;
bool vis[];
int f[];
int son[];
int sum,ans;
int root;
int t[];
int dis[];
void findroot(int now,int fa)
{
son[now]=;f[now]=;
for(int i=head[now];i>=;i=e[i].next)
{
int to=e[i].to;
if(to!=fa&&!vis[to])
{
findroot(to,now);
son[now]+=son[to];
f[now]=max(f[now],son[to]);
}
}
f[now]=max(f[now],sum-son[now]);
if(f[now]<f[root]) root=now;
}
void dfs(int now,int fa)
{
t[dis[now]]++;
for(int i=head[now];i>=;i=e[i].next)
{
int to=e[i].to;
if(!vis[to]&&to!=fa)
{
dis[to]=(dis[now]+e[i].c)%;
dfs(to,now);
}
}
}
int cal(int now,int sd)
{
memset(t,,sizeof(t));
dis[now]=sd%;dfs(now,);
return t[]*t[]*+t[]*t[];
}
void work(int now)
{
vis[now]=;
ans+=cal(now,);
for(int i=head[now];i>=;i=e[i].next)
{
int to=e[i].to;
if(!vis[to])
{
ans-=cal(to,e[i].c);
root=;sum=son[to];
findroot(to,);
work(root);
}
}
}
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int main()
{
memset(head,-,sizeof(head));
scanf("%d",&n);
for(int i=;i<n;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,w);
}
f[]=sum=n;
findroot(,);
work(root);
int t=gcd(ans,n*n);
printf("%d/%d",ans/t,n*n/t);
}

[BZOJ2152]聪聪可可 点分治/树形dp的更多相关文章

  1. BZOJ 2152 / Luogu P2634 [国家集训队]聪聪可可 (点分治/树形DP)

    题意 一棵树,给定边权,求满足两点之间的路径上权值和为3的倍数的点对数量. 分析 点分治板题,对每个重心求子树下面的到根的距离模3分别为0,1,2的点的个数就行了. O(3nlogn)O(3nlogn ...

  2. [bzoj2152][聪聪和可可] (点分治+概率)

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...

  3. BZOJ 1415: [Noi2005]聪聪和可可( 最短路 + 期望dp )

    用最短路暴力搞出s(i, j)表示聪聪在i, 可可在j处时聪聪会走的路线. 然后就可以dp了, dp(i, j) = [ dp(s(s(i,j), j), j) + Σdp(s(s(i,j), j), ...

  4. BZOJ1415 [Noi2005]聪聪和可可 【SPFA + 期望dp记忆化搜索】

    题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  5. [codeforces161D]Distance in Tree(点分治/树形dp)

    题意:求树上距离为k的点对个数: 解题关键:练习一下点分治不用容斥 而直接做的做法.注意先查询,后更新. 不过这个方法有个缺陷,每次以一个新节点为根,必须memset mp数组,或许使用map会好些, ...

  6. [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP

    题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...

  7. E. Alternating Tree 树点分治|树形DP

    题意:给你一颗树,然后这颗树有n*n条路径,a->b和b->a算是一条,然后路径的权值是 vi*(-1)^(i+1)  注意是点有权值. 从上头往下考虑是点分治,从下向上考虑就是树形DP, ...

  8. 『You Are Given a Tree 整体分治 树形dp』

    You Are Given a Tree Description A tree is an undirected graph with exactly one simple path between ...

  9. BZOJ4182 Shopping(点分治+树形dp)

    点分治,每次考虑包含根的连通块,做树形多重背包即可,dfs序优化.注意题面给的di范围是假的,坑了我0.5h,心态炸了. #include<iostream> #include<cs ...

随机推荐

  1. H2数据库使用

    H2数据库使用 H2数据库介绍 H2的优势: 1.h2采用纯Java编写,因此不受平台的限制. 2.h2只有一个jar文件,十分适合作为嵌入式数据库试用. 3.性能和功能的优势 H2和各数据库特征比较 ...

  2. 通过学习制作长微博工具来了解水印的制作,及EditText中的内容在图片中换行显示

    长微博工具非常有用,140字的要求可能阻止你写更多的内容,于是长微博工具应运而生,虽然网上有很多长微博工具,但是我都不是很满意,所以自己想做一个,通过做这个长微博工具,我学习到了很多东西,有两个难点, ...

  3. PCA学习笔记

    主成分分析(Principal Component Analysis,简称PCA)是最常用过的一种降维方法 在引入PCA之前先提到了如何使用一个超平面对所有的样本进行恰当的表达? 即若存在这样的超平面 ...

  4. CentOS下创建和root权限完全相同用户

    新建用户 [root@bagon ~]# useradd newroot 修改密码 [root@bagon ~]# passwd newroot 编辑/etc/passwd,找到新建用户那一行 new ...

  5. 原始套接字--arp相关

    arp请求示例 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <un ...

  6. Android M中 JNI的入门学习

    今年谷歌推出了Android 6.0,作为安卓开发人员,对其学习掌握肯定是必不可少的,今天小编和大家分享的就是Android 6.0中的 JNI相关知识,这是在一个安卓教程网上看到的内容,感觉很不错, ...

  7. Android中如何为自定义控件增加状态?

    在android开发中我们常常需要对控件进行相关操作,虽然网上已有很多对控件酷炫的操作,但小编今天给大家分享的纯属实用出发.在查看了一些列安卓教程和文档后,发现了一位大牛分享的非常不错的有关andro ...

  8. hdu 1811 Rank of Tetris (拓扑 & 并查集)

    Rank of Tetris Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  9. MPLAB® XC C编译器的Workstation License的获取及安装方法

    MPLAB®XC C编译器的Workstation License获取及安装方法如下:首先需要购买获得一个XC C编译器的激活码,然后到以下网页(http://www.microchip.com/rl ...

  10. [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解

    原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...