【UVA10655】 Contemplation! Algebra
题目
给定 \(p = a + b\) 和 \(q = ab\) 和 \(n\),求 \(a ^ n + b ^ n\)。
$0\le n\lt 2^{63} $
分析
大水题。
先考虑 \(n\) 较小的情况,可以很容易的想到递推:
\text{令} F(i) & = a ^ n + b ^ n \\
& = (a + b)(a ^ {n - 1} + b ^ {n - 1}) - (ab ^ {n - 1} + a^{n - 1}b) \\
& = (a + b)(a ^ {n - 1} + b ^ {n - 1}) - ab(a ^ {n - 2} + b ^ {n - 2}) \\
& = p \times F(i - 1) - q \times F(i - 2)
\end{array}
\]
然后发现这个递推式可以用矩阵优化:
p & - q \\
1 & 0
\end{matrix}\right]
\times
\left[\begin{matrix}
F[i] \\
F[i - 1]
\end{matrix}\right] =
\left[\begin{matrix}
F[i] \times p & + & F[i - 1]\times (-q) \\
F[i] \times 1 & + & F[i - 1]\times 0
\end{matrix}\right] =
\left[\begin{matrix}
F[i + 1] \\
F[i]
\end{matrix}\right]
\]
即:
p & - q \\
1 & 0
\end{matrix}\right]^n
\times
\left[\begin{matrix}
F[1] \\
F[0]
\end{matrix}\right] =
\left[\begin{matrix}
F[n + 1] \\
F[n]
\end{matrix}\right]
\]
显然,\(F[1] = p,\ F[0] = 2\)。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 10;
struct matrix {
ll a[MAXN][MAXN]; int rowSize, lineSize;
matrix(int x, int y) {
rowSize = x; lineSize = y;
}
ll *operator [](const unsigned &i) {return a[i];}
matrix operator *(matrix y) {
matrix ans(rowSize, y.lineSize);
for(int i = 0; i < ans.rowSize; i++)
for(int j = 0; j < ans.lineSize; j++) {
ans[i][j] = 0;
for(int k = 0; k < lineSize; k++)
ans[i][j] += a[i][k] * y[k][j];
}
return ans;
}
} u(2, 2);
matrix qPow(matrix x, ll b) {
matrix ans = u, base = x;
while(b) {
if(b & 1)
ans = ans * base;
base = base * base;
b >>= 1;
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
u[0][0] = 1; u[0][1] = 0;
u[1][0] = 0; u[1][1] = 1;
ll p, q, n;
while(scanf("%lld%lld%lld", &p, &q, &n) == 3) {
matrix a(2, 2), b(2, 2), st(2, 1);
a[0][0] = p; a[0][1] = -q;
a[1][0] = 1; a[1][1] = 0;
st[0][0] = p; st[1][0] = 2;
b = qPow(a, n) * st;
printf("%lld\n", b[1][0]);
}
return 0;
}
UVA10655 Contemplation! Algebra
【UVA10655】 Contemplation! Algebra的更多相关文章
- 【线性代数】Linear Algebra Big Picture
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Lin ...
- Contemplation! Algebra(矩阵快速幂,uva10655)
Problem EContemplation! AlgebraInput: Standard Input Output: Standard Output Time Limit: 1 Second Gi ...
- 【原创】开源Math.NET基础数学类库使用(01)综合介绍
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【原创】开源Math.NET基础数学类库使用(04)C#解析Matrix Marke数据格式
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- SCI&EI 英文PAPER投稿经验【转】
英文投稿的一点经验[转载] From: http://chl033.woku.com/article/2893317.html 1. 首先一定要注意杂志的发表范围, 超出范围的千万别投,要不就是浪费时 ...
- 【输入法】Rime-中州韵 基本设置 附:官方定制指南
前言 不知不觉就到了年终了,距离上次更新博客已经有一个半月,这段时间天天在加班,也没作一下新的学习计划,趁着元旦放假,写一点好玩的东西,这次要记录的是一点关于Rime相关的东西,文章本身不会长,只是说 ...
- 【线性代数】7-2:线性变化的矩阵(The Matrix of a Linear Transformation)
title: [线性代数]7-2:线性变化的矩阵(The Matrix of a Linear Transformation) categories: Mathematic Linear Algebr ...
- 【线性代数】7-3:对角化和伪逆(Diagonalization and the Pseudoinverse)
title: [线性代数]7-3:对角化和伪逆(Diagonalization and the Pseudoinverse) categories: Mathematic Linear Algebra ...
随机推荐
- QT OpenGL中文教程在QT4版本后的错误代码更改(一)
由于教程中说的已经够可以了,这里就不对代码进行分析了,有兴趣可以自己去看看.这个教程来源于原来的NeHeOpenGL中文教程 (http://www.yakergong.net/nehe/) ,但其有 ...
- Graylog安装操作
Graylog安装操作 实验环境centos7.5系统 mem:4-8G disk:50G 关闭selinux以及firewalld 一.准备环境 1.1.java环境 下载java的j ...
- OpenCV2马拉松第5圈——线性滤波
收入囊中 这里的非常多内容事实上在我的Computer Vision: Algorithms and ApplicationsのImage processing中都有讲过 相关和卷积工作原理 边界处理 ...
- 【CCPC-Wannafly Winter Camp Day4 (Div1) D】欧拉回路(分类讨论)
点此看题面 大致题意: 有一个\(n\)行\(m\)列的网格图,让你给每一条边设置一个通过次数(\(\ge1\)),使其成为欧拉回路,且通过次数总和最小. 初始化 首先,由于通过次数\(\ge1\), ...
- 在vue中同时使用过渡和动画
在上次的动画中,在显示和隐藏有动画效果,但是,刷新页面的时候,第一次的显示没有动画效果 需求:刷新页面的时候也有动画效果 <transition name='fade' appear enter ...
- python2.7 加密模块 解决各种坑
1 Python27 安装crypto Windows安装 在Windows上安装的时候直接 pip install pycrypto会报错,参考:http://blog.csdn.net/teloy ...
- C语言函数申明关键字inline
内联inline是给编译器的优化提示,如果一个函数被编译成inline的话,那么就会把函数里面的代码直接插入到调用这个函数的地方,而不是用调用函数的形式.如果函数体代码很短的话,这样会比较有效率,因为 ...
- rnn,lstm and JuergenSchmidhuber
JuergenSchmidhuber 是瑞士的一位牛人,主要贡献是rnn, lstm. google的deep mind新作,Human-level control through deep rein ...
- POJ2409 Let it Bead(Polya定理)
Let it Bead Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6443 Accepted: 4315 Descr ...
- 基于Xtrabackup恢复单个innodb表
Preface We all know that Xtrabackup is a backup tool of percona for innodb or Xtradb.It's us ...