斐波那契数列(递归)&求100以内的素数
Java
5
添加了
java.util.Scanner
类,这是一个用于扫描输入文本的新的实用程序。它是以
前的
StringTokenizer
和
Matcher
类之间的某种结合。由于任何数据都必须通过同一模式的
捕获组检索或通过使用一个索引来检索文本的各个部分。于是可以结合使用正则表达式和从
输入流中检索特定类型数据项的方法。这样,除了能使用正则表达式之外,
Scann输入流中检索特定类型数据项的方法。这样,除了能使用正则表达式之外,
1.斐波那契数列
Java中Scanner类这是一个用于扫描输入文本的
可以使用该类创建一个对象
Scanner reader=new Scanner(System.in);
然后reader调用下面的方法,读取用户在命令行输入的各种类型的数据
package mianshiti;
import java.util.*;
import java.io.*;
public class fibonacci {
public static int k=0;
public static void main(String[] args) {
Scanner cin=new Scanner(System.in);//Scanner类这是一个用于扫描输入文本的
long a=cin.nextLong();//将输入信息的下一个标记扫描为一个long
System.out.println(fibonacci(a));
System.out.println("共调用了"+k+"次");
}
public static long fibonacci(long m){
if(m==0|m==1){
k++;
return m;
}else{
return fibonacci(m-1)+fibonacci(m-2);
}
} }
递归的缺点:
会造成调用栈的溢出,因为需要为每一次函数调用在内存栈中分配空间,而每个进程的栈的容量是有限的。当递归调用层级太多时,就会超出栈的容量,从而导致调用栈溢出。
更简洁的方法:
可以直接从下往上算,首先根据f(0)和f(1)算出f(2),再根据f(1)和f(2)算出f(3),依次类推可以算出第n项f(n),时间复杂度是O(n)
public class Solution {
public int Fibonacci(int n) {
if(n==0){
return 0;
}
if(n==1){
return 1;
}
int numfn1=0;
int numfn2=1;
int currentfn=0;
for(int i=2;i<=n;i++){
currentfn=numfn1+numfn2;
numfn1=numfn2;
numfn2=currentfn;
}
return currentfn;
}
}
跳台阶:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路:当前台阶的跳法总数=当前台阶后退一阶的台阶的跳法总数+当前台阶后退二阶的台阶的跳法总数
public class Solution {
public int JumpFloor(int target) {
if(target==2||target==1){
return target;
}
// 第一阶和第二阶考虑过了,初始当前台阶为第三阶,向后迭代 // 思路:当前台阶的跳法总数=当前台阶后退一阶的台阶的跳法总数+当前台阶后退二阶的台阶的跳法总数 int jumpSum=0;//当前台阶的跳法总数
int jumpSumBackStep1=2;//当前台阶后退一阶的台阶的跳法总数
int jumpSumBackStep2=1;//当前台阶后退二阶的台阶的跳法总数
for(int i=3;i<=target;i++){
jumpSum=jumpSumBackStep1+jumpSumBackStep2;
jumpSumBackStep2=jumpSumBackStep1;// 后退一阶在下一次迭代变为后退两阶
jumpSumBackStep1=jumpSum;// 当前台阶在下一次迭代变为后退一阶
}
return jumpSum;
}
}
矩形覆盖
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
√ | |||||||
√ |
√ | √ | ||||||
× | × |
public class Solution {
public int RectCover(int target) {
if (target < 1) {
return 0;
} else if (target == 1 || target == 2) {
return target;
} else {
return RectCover(target-1) + RectCover(target-2);
}
}
}
2.求100以内的素数
素数,是指在大于1的自然数中,除了1和它本身以外,不能被其他数整除的数。
合数,比1大但不是素数的。
1和0既非素数也非合数
如:2,3,5,7....
package mianshiti; public class primenumber { public static void main(String[] args) {
int n=0;//用来计算当前是第几个素数
for(int i=2;i<=100;i++){
if(isPrime(i)){
n++;
System.out.print(i+"\t");
if(n%10==0){//每10个数,换一次行
System.out.print("\n");
}
}
} }
static boolean isPrime(int number){
for(int i=2;i<=Math.sqrt(number);i++){//用一个数除以其他数,只要除到这个数的根号Math.sqrt(number)就可以判断是否素数
if(number%i==0){
return false;
}
}
return true;
}
}
斐波那契数列(递归)&求100以内的素数的更多相关文章
- PHP算法之斐波那契数列(递归)
/*斐波那契数列 源代码分析 f(x) = 1 ; 当 x < 2 ; f(x) = f(x-1)+f(x-2); 当 x >= 2 ; 通项式为:fn ={((1+根号5)/2)^n-( ...
- python之斐波那契数列递归推导在性能方面的反思
在各种语言中,谈到递归首当其冲的是斐波那契数列,太典型了,简直就是标杆 一开始本人在学习递归也是如此,因为太符合逻辑了 后台在工作和学习中,不断反思递归真的就好嘛? 首先递归需要从后往前推导,所有数据 ...
- DP思想在斐波那契数列递归求解中的应用
斐波那契数列:1, 1, 2, 3, 5, 8, 13,...,即 f(n) = f(n-1) + f(n-2). 求第n个数的值. 方法一:迭代 public static int iterativ ...
- Reverse反转算法+斐波那契数列递归+Reverse反转单链表算法--C++实现
Reverse反转算法 #include <iostream> using namespace std; //交换的函数 void replaced(int &a,int & ...
- java递归 斐波那契数列递归与非递归实现
递归简单来说就是自己调用自己, 递归构造包括两个部分: 1.定义递归头:什么时候需要调用自身方法,如果没有头,将陷入死循环 2.递归体:调用自身方法干什么 递归是自己调用自己的方法,用条件来判断调用什 ...
- [剑指offer] 7. 斐波那契数列 (递归 时间复杂度)
简介: 杨辉三角每条斜线上的数之和就构成斐波那契数列. 思路: 参考文章:https://mp.weixin.qq.com/s?src=11×tamp=1551321876& ...
- 斐波那契数列 递归 尾递归 递推 C++实现
==================================声明================================== 本文原创,转载请注明作者和出处,并保证文章的完整性(包括本 ...
- [python]兔子问题,斐波那契数列 递归&非递归
假设一对幼年兔子需要一个月长成成年兔子,一对成年兔子一个月后每个月都可以繁衍出一对新的幼年兔子(即兔子诞生两个月后开始繁殖).不考虑死亡的情况,问第 N 个月时共有多少对兔子? 结果前几个月的兔子数量 ...
- 求前n项的斐波那契数列、求两个数的最小公倍数、求两个数的最大公约数
class Fib(object): def __call__(self,n): a=[0,1] for i in range(n-2): an ...
- 剑指offer-矩形覆盖-斐波那契数列(递归,递推)
class Solution { public: int rectCover(int number) { if(number==0 || number==1||number==2) return nu ...
随机推荐
- centos6.5_64bit_tomcat日志合并在一个.log下
问题 tomcat每次启动时,自动在logs目录下生产以下日志文件,且每天都会生成对应日期的一个文件,造成日志文件众多: 目的 Tomcat以上日志都输出到同一个文件中. 修 ...
- vue短信验证码组件
Vue.component('timerBtn',{ template: '<button v-on:click="run" :disabled="disabled ...
- Altium_Designer-PCB中各层作用详解
一直以来,对PCB中各层,比如:solder层.paste层.Top overlay层等等这些一知半解.今天仔细看了下,向大家介绍一下,有不对的地方还请指正. 1.mechanical机械层是定义整个 ...
- 如何在windows下运行Linux命令?(转载)
在windows上可以运行或使用linux下面的命令吗?可以,小编今天就来分享怎么样让Windows支持Linux命令,做这些安装和设置后,就可以非常方便的在windows系统中使用linux下面的命 ...
- 【转载】#402 - Value Equality vs. Reference Equality
When we normally think of "equality",we're thinking of value equality - the idea that the ...
- firewalld 使用简介
学习apache安装的时候需要打开80端口,由于centos 7版本以后默认使用firewalld后,网上关于iptables的设置方法已经不管用了,想着反正iptable也不会用,索性直接搬官方文档 ...
- React的安装
创建: 2019/05/01 完成: 2019/05/01 create-react-app 学习及创建单页app npx create-react-app my-app cd my-app npm ...
- css3阴影 box-shadow
语法 box-shadow:X轴偏移量 y轴偏移量 [阴影模糊半径] [阴影扩展半径] [阴影颜色] [投影方式] 参数介绍: 注:inset 可以写在参数的第一个或最后一个,其它位置是无效的. 阴影 ...
- spfa判负权边
spfa判负环 如果一个点在spfa中被入队了大于n次 那么,我们就能肯定,有负环出现. 因为一个点入队时,他肯定被更新了一次. 所以........ 如果不存在负权环.这个点最多被更新节点数次 我们 ...
- apache日志
<VirtualHost *:80> ServerAdmin chinasir.xyz@gmail.com DocumentRoot /var/www/html/baidu ServerN ...