[bzoj2111][ZJOI2010]Perm 排列计数 ——问题转换,建立数学模型
题目大意
称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值。
题解
- 问题转换,建立模型。
可以发现,本题就是要求小根完全二叉树的个数。 - 树上dp
定义f[n]为以n为根的完全二叉树个数。
根据乘法原理,
f[n] = f[i<<1] * f[i<<1|1] * C(s[i]-1, i << 1)
可以知道,n可以从后向前递推。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 5e6+5;
#define ll long long
int n, p;
int f[maxn], s[maxn];
int fact[maxn], ifact[maxn];
int pow(int a, int b, int p) {
int ans = 1;
while(b) {
if(b & 1) ans = (ll) ans * a % p;
b >>= 1;
a = (ll)a * a %p;
}
return ans;
}
int inv(int n, int p) {
return pow(n, p-2, p);
}
void init() {
fact[1] = 1;
ifact[1] = 1;
for(int i = 2; i <= n; i++) {
fact[i] = (ll)i * fact[i-1] % p;
ifact[i] = inv(fact[i], p);
}
}
int C(int n, int m, int p) {
if(n < m) return 0;
return (ll)fact[n] * ifact[m] % p * ifact[n-m] % p;
}
int lucas(int n, int m, int p) {
if(!n && !m) return 1;
return (ll)C(n%p, m%p, p) * lucas(n/p, m/p, p) % p;
}
int main() {
ifact[0] = 1;
scanf("%d %d", &n, &p);
init();
for(int i = n; i; i--) {
s[i] = s[i<<1] + s[i << 1|1] + 1;
f[i] = lucas(s[i]-1, s[i<<1], p);
if(i << 1 <= n) f[i] = (ll)f[i] * f[i<<1] % p;
if((i << 1 | 1) <= n) f[i] = (ll)f[i] * f[i<<1|1] % p;
}
printf("%d", f[1]);
}
[bzoj2111][ZJOI2010]Perm 排列计数 ——问题转换,建立数学模型的更多相关文章
- BZOJ2111: [ZJOI2010]Perm 排列计数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...
- [BZOJ2111][ZJOI2010]Perm排列计数(组合数学)
题意就是求一个n个点的堆的合法形态数. 显然,给定堆中所有数的集合,则这个堆的根是确定的,而由于堆是完全二叉树,所以每个点左右子树的大小也是确定的. 设以i为根的堆的形态数为F(i),所以F(i)+= ...
- [BZOJ2111]:[ZJOI2010]Perm 排列计数(组合数学)
题目传送门 题目描述 称一个1,2,...,N的排列${P}_{1}$,${P}_{2}$,...,${P}_{N}$是Magic的,当且仅当2≤i≤N时,${P}_{i}$>${P}_{\fr ...
- 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数
[BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- 2111: [ZJOI2010]Perm 排列计数
2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...
- bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...
- 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
随机推荐
- MyFirstDay_答案_1.**猫(自己整理)
1>***猫: python基础类: 字符串反转的常用处理方式: # 方法一:使用字符串切片 s = "hello python" result = s[::-1] prin ...
- POJ 2676 数独(DFS)
Sudoku Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 21612 Accepted: 10274 Specia ...
- AD高级规则设置
inpolygon 是所有的覆铜 ispad 是焊盘到焊盘的间距 IsVia 过孔间距 ispad and InComponent('S1') 设置某个器件的焊盘间距规则 ispad and H ...
- 1196/P2323: [HNOI2006]公路修建问题
1196: [HNOI2006]公路修建问题 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2191 Solved: 1258 Descriptio ...
- getElementByName????????,????????,
getElementByName可以获取多个元素,获得的是一个数组, getElementById只能获取一个,是dom从上往下的第一个元素.
- IOS多网卡抓包
linux下libpcap支持从多网卡抓包,设置为any即可 在IOS或者mac上就无法通过次方法抓取所有网卡报文 1.通过设置libevent事件回调,每个网卡注册读事件, fd通过 pd = pc ...
- 《Cracking the Coding Interview》——第12章:测试——题目5·
2014-04-25 00:41 题目:怎么测试一支笔?(Pen?您老说的是钢笔?) 解法:这种简约而不简单的题目,实在是面试官最喜欢,面试者最头疼的类型了.面试官可以只花三秒,以一种灰常高贵冷艳的语 ...
- nginx清除反向代理缓存
nginx重启无法清除反向代理的缓存,可以清空安装目录下的proxy_cache文件夹里的内容来清除.
- Python 快速部署安装所需模块
需求 我们需要在拷给别人或者提交至服务器也用同样的模块,好保持和开发的一样,所以我们需要自己手动写配置模块信息. 方法 在根目录下创建一个 requirements.txt 文件 里面写 模块名== ...
- [译]15-spring 自动装配
前面的章节我们已经学习了如何使用bean元素在xml配置文件中声明一个bean.也学习了如何使用bean的子元素contructor-arg 和property进行bean的依赖项的注入. 之前bea ...