poj1679 次最小生成树 kruskal(暴力枚举)
Description
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.
Input
Output
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique! 这题直接暴力枚举,找到一颗最小生成树,标记一下,依次删边
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#include <string>
#include <math.h>
using namespace std;
const int maxn = ;
const int INF = 0x7fffffff;
struct node {
int u, v, w;
int used, num, flag;
} qu[ * maxn];
int fa[maxn], n, m;
int cmp(node a, node b) {
return a.w < b.w;
}
void init() {
for (int i = ; i <= n ; i++) fa[i] = i;
}
int Find(int x) {
return fa[x] == x ? x : fa[x] = Find(fa[x]);
}
int combine(int x, int y) {
int nx = Find(x);
int ny = Find(y);
if (nx != ny) {
fa[nx] = ny;
return ;
}
return ;
}
int kruskal(int flag) {
init();
int sum = , cnt = ;
for (int i = ; i < m ; i++) {
if (qu[i].flag) continue;
if (combine(qu[i].v, qu[i].u)) {
if (!flag) qu[i].used = ;
sum += qu[i].w;
cnt++;
if (cnt == n - ) break;
}
}
if (cnt != n - ) return -;
return sum;
}
int main() {
int t;
scanf("%d", &t);
while(t--) {
scanf("%d%d", &n, &m);
for (int i = ; i < m ; i++) {
scanf("%d%d%d", &qu[i].u, &qu[i].v, &qu[i].w);
qu[i].flag = , qu[i].used = ;
}
sort(qu, qu + m, cmp);
int sum = kruskal();
int flag = ;
for (int i = ; i < m ; i++) {
if (qu[i].used ) {
qu[i].flag = ;
int temp = kruskal();
qu[i].flag = ;
if (temp == sum) {
flag = ;
break;
}
}
}
if (flag) printf("Not Unique!\n");
else printf("%d\n", sum);
}
return ;
}
poj1679 次最小生成树 kruskal(暴力枚举)的更多相关文章
- poj1679(最小生成树)
传送门:The Unique MST 题意:判断最小生成树是否唯一. 分析:先求出原图的最小生成树,然后枚举删掉最小生成树的边,重做kruskal,看新的值和原值是否一样,一样的话最小生成树不唯一. ...
- CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution (暴力枚举)
题意:求定 n 个数,求有多少对数满足,ai^bi = x. 析:暴力枚举就行,n的复杂度. 代码如下: #pragma comment(linker, "/STACK:1024000000 ...
- 2014牡丹江网络赛ZOJPretty Poem(暴力枚举)
/* 将给定的一个字符串分解成ABABA 或者 ABABCAB的形式! 思路:暴力枚举A, B, C串! */ 1 #include<iostream> #include<cstri ...
- HNU 12886 Cracking the Safe(暴力枚举)
题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12886&courseid=274 解题报告:输入4个数 ...
- 51nod 1116 K进制下的大数 (暴力枚举)
题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...
- Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举
题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...
- bzoj 1028 暴力枚举判断
昨天梦到这道题了,所以一定要A掉(其实梦到了3道,有两道记不清了) 暴力枚举等的是哪张牌,将是哪张牌,然后贪心的判断就行了. 对于一个状态判断是否为胡牌,1-n扫一遍,然后对于每个牌,先mod 3, ...
- POJ-3187 Backward Digit Sums (暴力枚举)
http://poj.org/problem?id=3187 给定一个个数n和sum,让你求原始序列,如果有多个输出字典序最小的. 暴力枚举题,枚举生成的每一个全排列,符合即退出. dfs版: #in ...
- hihoCoder #1179 : 永恒游戏 (暴力枚举)
题意: 给出一个有n个点的无向图,每个点上有石头数个,现在的游戏规则是,设置某个点A的度数为d,如果A点的石子数大于等于d,则可以从A点给每个邻接点发一个石子.如果游戏可以玩10万次以上,输出INF, ...
随机推荐
- MySQL中使用group_concat()函数数据被截取(有默认长度限制),谨慎!
最近在工作中遇到一个问题: 我们系统的一些逻辑处理是用存储过程实现的,但是有一天客服反馈说订单下单失败,查了下单牵扯到的产品基础资源,没有问题. 下单的存储过程中有这样两句代码: ; ; ; 执行存储 ...
- JavaScript 事件机制
1 什么是事件 JavaScript 使我们有能力创建动态页面.事件是可以被 JavaScript 侦测到的行为. 网页中的每个元素都可以产生某些可以触发 JavaScript 函数的事件.比方说,我 ...
- 中通快递股份有限公司.net高级面试题
中通快递分布式技术开发 gc垃圾回收原理 .net中,托管代码的内存管理是自动的,由GC进行管理,而对于非托管代码,则需要.net手动处理 CLR运行时,内存分为:托管堆和栈,其中栈用于存储值类型 ...
- 【PHP】Maximum execution time of 30 seconds exceeded解决办法
Maximum execution time of 30 seconds exceeded,今天把这个错误的解决方案总结一下: 简单总结一下解决办法: 报错一:内存超限,具体报错语句忘了,简单说一下解 ...
- 初试PHP连接sql server
最开始想使用 pdo_sqlsrv 拓展,但是一直没成功,本文采用的是 pdo_dblib + freetds. 环境:CentOS 6.8.PHP 5.6.20 freetds wget ftp:/ ...
- PHP关闭notice级别的错误提示
1.在php.ini文件中改动error_reporting改为: error_reporting=E_ALL & ~E_NOTICE 2.如果你不能操作php.ini文件,你可以使用如下方法 ...
- swoole学习(一)----linux安装swoole
1.下载swoole 登录swoole官网 https://www.swoole.com/ 点击下载,找到github或者其他链接下载下来 放到虚拟机上. 也可以使用虚拟机下载 2.登录虚拟机 推荐使 ...
- 守护进程,进程安全,IPC进程间通讯,生产者消费者模型
1.守护进程(了解)2.进程安全(*****) 互斥锁 抢票案例3.IPC进程间通讯 manager queue(*****)4.生产者消费者模型 守护进程 指的也是一个进程,可以守护着另一个进程 一 ...
- Triangular Sums 南阳acm122
Triangular Sums 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描述 The nth Triangular number, T(n) = 1 + … + n ...
- 基于pandas进行数据预处理
很久没用pandas,有些有点忘了,转载一个比较完整的利用pandas进行数据预处理的博文:https://blog.csdn.net/u014400239/article/details/70846 ...