扩展欧几里得(ex_gcd),中国剩余定理(CRT)讲解 有代码
扩展欧几里得算法
求逆元就不说了。
ax+by=c
这个怎么求,很好推。
设d=gcd(a,b) 满足d|c方程有解,否则无解。
扩展欧几里得求出来的解是 x是 ax+by=gcd(a,b)的解。
对于c的话只需要x*c/gcd(a,b)%(b/d)即可,因为b/d的剩余系更小。
为什么这样呢?
设a'=a/d,b'=b/d 求出a'x+b'y=1的解,两边同时乘d,然后x也是ax+by=d的解,
然后因为b'的剩余系更小,所以%b’
中国剩余定理是合并线性方程组的
中国余数定理
转化为一个线性方程 ax+by=c
a,b
c,d
num % a=b;
num % c=d;
求num最小正整数解;
num=ax+b=cy+d
ax-cy=d-b
可以化为求解 ax≡(d-b)(mod c);
ax+cy=d-b
用ex_gcd求解出x;
num=a*x+b;
这样num mod a=b
num mod c=d-b+b=d
因为x为最小正整数解,所以num为最小解
满足的集合为{x|x=num+k·[a,b],(k∈Z)}
然后转化为%lcm(a,c)=num
然后继续合并
附上代码,完美代码
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
typedef long long ll;
using namespace std;
ll ex_gcd(ll a,ll b,ll &x,ll &y)
{
if (!b)
{
x=,y=;
return a;
}
ll fzy=ex_gcd(b,a%b,x,y);
ll t=x;
x=y;y=t-a/b*y;
return fzy;
}
int main()
{
int t;
ll z1,z2,z3,z4;
while (cin>>t)
{
bool flag=;
scanf("%lld%lld",&z1,&z2);
for (int i=;i<t;i++)
{
scanf("%lld%lld",&z3,&z4);
if (flag) continue;
ll a=z1,b=z3,c=z4-z2;
ll x,y;
ll d=ex_gcd(a,b,x,y);
if (c%d!=)
{
flag=;
continue;
}
ll t=b/d;
x=(x*(c/d)%t+t)%t;//t的剩余系更小。
z2=z1*x+z2;//得出num
z1=z1*(z3/d);
cout<<"z1="<<z1<<" z2="<<z2<<endl;
}
if (flag==) cout<<-<<endl;
else cout<<z2<<endl;
}
}
扩展欧几里得(ex_gcd),中国剩余定理(CRT)讲解 有代码的更多相关文章
- hdu1573-X问题-(扩展欧几里得定理+中国剩余定理)
X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu3579-Hello Kiki-(扩展欧几里得定理+中国剩余定理)
Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- POJ2115 - C Looooops(扩展欧几里得)
题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...
- poj2115 C Looooops——扩展欧几里得
题目:http://poj.org/problem?id=2115 就是扩展欧几里得呗: 然而忘记除公约数... 代码如下: #include<iostream> #include< ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
- gcd,扩展欧几里得,中国剩余定理
1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题: ...
- C Looooops(扩展欧几里得+模线性方程)
http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...
- 中国剩余定理(CRT)及其扩展(EXCRT)详解
问题背景 孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第 ...
随机推荐
- Python中的not, and, or
logical_operator_lst = [ ('and 与运算',), ('or 或运算',), ('not 非运算',), ('逻辑运算符的优先级',), ('实例',), ('练习',), ...
- win8电脑字体出现方格的解决方法
一般电脑出现乱码有几种可能,最常见的可能就是电脑字体的丢失,其次就是电脑字体被病毒所损坏,因此,首先我们要做的就是下载字体并进行安装. 下载 simsun.tcc点击安装,如果电脑字体依然是这种情况( ...
- 操作视频-对视频进行canny边缘检测
#include<opencv2/opencv.hpp> using namespace cv; int main() { VideoCapture capture(); //从摄像头读入 ...
- Hacker Cups and Balls Gym - 101234A 二分+线段树
题目:题目链接 题意:有编号从1到n的n个球和n个杯子. 每一个杯子里有一个球, 进行m次排序操作,每次操作给出l,r. 如果l<r,将[l,r]范围内的球按升序排序, 否则降序排, 问中间位置 ...
- BZOJ 3027: [Ceoi2004]Sweet
容斥 #include<cstdio> using namespace std; int a,b,n,m[15]; long long ans=0,mod=2004; long long ...
- FMDB的线程安全
最近面试被问到FMDB的多线程处理问题,因为之前项目中是移植别人的代码,没有踩过这里的坑. 问题: 多线程同时访问数据库时,报数据库锁定的问题,错误信息是: Unknown error finaliz ...
- runloop的mode作用是什么?
用来控制一些特殊操作只能在指定模式下运行,一般可以通过指定操作的运行mode来控制执行时机,以提高用户体验 系统默认注册了5个Mode kCFRunLoopDefaultMode:App的默认Mode ...
- php中utf-8转unicode
public function utf8_unicode($str) { $unicode = array(); $values = array(); $lookingFor = 1; for ($i ...
- 【Radial Basis Function Network】林轩田机器学习技法
这节课主要讲述了RBF这类的神经网络+Kmeans聚类算法,以及二者的结合使用. 首先回归的了Gaussian SVM这个模型: 其中的Gaussian kernel又叫做Radial Basis F ...
- es6实现简单模板编译
现在有各种框架,其中一个主要模块就是关于template.最火的vue.react等框架,在这一块上也是是下足了功夫.我也想写一个自己的模板编译工具,所以就做了个简单的实现,主要是使用es6的反引号编 ...