RNN适用场景

循环神经网络(Recurrent Neural Network)适合处理和预测时序数据

RNN的特点

RNN的隐藏层之间的节点是有连接的,他的输入是输入层的输出向量.extend(上一时刻隐藏层的状态向量)。

demo:单层全连接网络作为循环体的RNN

输入层维度:x

隐藏层维度:h

每个循环体的输入大小为:x+h

每个循环体的输出大小为:h

循环体的输出有两个用途:

  1. 下一时刻循环体的输入的一部分
  2. 经过另一个全连接神经网络,得到当前时刻的输出

序列长度

理论上RNN支持任意序列长度,但过长会导致优化时梯度消散的问题,因此一般都设定一个最大长度。超过该长度是,进行截断。

论文原文:On the difficulty of training Recurrent Neural Networks

长短时记忆网络(LSTM结构)

论文原文:Long Short-term memory

循环体:拥有输入门、遗忘门、输出门的特殊网络结构

遗忘门:决定忘记当前输入、上一时刻状态和上一时刻输出中的哪一部分

输入门:决定当前输入、上一时刻状态、上一时刻输出中,哪些部分将进入当前时刻的状态

RNN的变种

  1. 双向RNN
  2. 深层RNN

RNN的dropout

不同层的循环体之间使用dropout,同一层循环体之间不使用dropout

demo

import os
import re
import io
import requests
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from zipfile import ZipFile
from tensorflow.python.framework import ops
ops.reset_default_graph()

about zipfile

1. start a graph session and set RNN parameters

sess = tf.Session()

epochs = 20 # run 20 epochs. An epoch equals to all batches of this training set.
batch_size = 250
max_sequence_length = 25
rnn_size = 10 # The RNN will be of size 10 units.
embedding_size = 50 # every word will be embedded in a trainable vector of size 50
min_word_frequency = 10 # We will only consider words that appear at least 10 times in our vocabulary
learning_rate = 0.0005
dropout_keep_prob = tf.placeholder(tf.float32)

2. Download or open data

Check if it was already downloaded and, if so,read in the file.

Otherwise, download the data and save it

# Download or open data

data_dir = 'data'

data_file = 'text_data.txt'

if not os.path.exists(data_dir):

    os.makedirs(data_dir)

if not os.path.isfile(os.path.join(data_dir, data_file)):

    zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'

    r = requests.get(zip_url)

    z = ZipFile(io.BytesIO(r.content))

    file = z.read('SMSSpamCollection')

    # Format Data

    text_data = file.decode()

    text_data = text_data.encode('ascii',errors='ignore')

    text_data = text_data.decode().split('\n')

    # Save data to text file

    with open(os.path.join(data_dir, data_file), 'w') as file_conn:

        for text in text_data:

            file_conn.write("{}\n".format(text)) # append "\n" to each row. Format method is from re lib. 

else:

    # Open data from text file

    text_data = []

    with open(os.path.join(data_dir, data_file), 'r') as file_conn:

        for row in file_conn:

            text_data.append(row)

    text_data = text_data[:-1]

text_data = [x.split('\t') for x in text_data if len(x)>=1]

[text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]

3. Create a text cleaning function then clean the data

def clean_text(text_string):

    text_string = re.sub(r'([^\s\w]|_|[0-9])+', '', text_string) # \w匹配包括下划线的任何单词字符 [^\s\w]匹配空格开头字符串

    text_string = " ".join(text_string.split())

    text_string = text_string.lower()

    return(text_string)

# Clean texts

text_data_train = [clean_text(x) for x in text_data_train]

4. Change texts into numeric vectors

This will convert a text to an appropriate list of indices


x_shuffled = text_processed[shuffled_ix] y_shuffled = text_data_target[shuffled_ix] # Split train/test set ix_cutoff = int(len(y_shuffled)*0.80) x_train, x_test = x_shuffled[:ix_cutoff], x_shuffled[ix_cutoff:] y_train, y_test = y_shuffled[:ix_cutoff], y_shuffled[ix_cutoff:] vocab_size = len(vocab_processor.vocabulary_) print("Vocabulary Size: {:d}".format(vocab_size)) print("80-20 Train Test split: {:d} -- {:d}".format(len(y_train), len(y_test))) # Create placeholders x_data = tf.placeholder(tf.int32, [None, max_sequence_length]) y_output = tf.placeholder(tf.int32, [None]) # Create embedding embedding_mat = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0)) embedding_output = tf.nn.embedding_lookup(embedding_mat, x_data) #embedding_output_expanded = tf.expand_dims(embedding_output, -1) # Define the RNN cell #tensorflow change >= 1.0, rnn is put into tensorflow.contrib directory. Prior version not test. if tf.__version__[0]>='1': cell=tf.contrib.rnn.BasicRNNCell(num_units = rnn_size) else: cell = tf.nn.rnn_cell.BasicRNNCell(num_units = rnn_size) output, state = tf.nn.dynamic_rnn(cell, embedding_output, dtype=tf.float32) output = tf.nn.dropout(output, dropout_keep_prob) # Get output of RNN sequence output = tf.transpose(output, [1, 0, 2]) last = tf.gather(output, int(output.get_shape()[0]) - 1) weight = tf.Variable(tf.truncated_normal([rnn_size, 2], stddev=0.1)) bias = tf.Variable(tf.constant(0.1, shape=[2])) logits_out = tf.matmul(last, weight) + bias # Loss function losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_out, labels=y_output) # logits=float32, labels=int32 loss = tf.reduce_mean(losses) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_out, 1), tf.cast(y_output, tf.int64)), tf.float32)) optimizer = tf.train.RMSPropOptimizer(learning_rate) train_step = optimizer.minimize(loss) init = tf.global_variables_initializer() sess.run(init) train_loss = [] test_loss = [] train_accuracy = [] test_accuracy = [] # Start training for epoch in range(epochs): # Shuffle training data shuffled_ix = np.random.permutation(np.arange(len(x_train))) x_train = x_train[shuffled_ix] y_train = y_train[shuffled_ix] num_batches = int(len(x_train)/batch_size) + 1 # TO DO CALCULATE GENERATIONS ExACTLY for i in range(num_batches): # Select train data min_ix = i * batch_size max_ix = np.min([len(x_train), ((i+1) * batch_size)]) x_train_batch = x_train[min_ix:max_ix] y_train_batch = y_train[min_ix:max_ix] # Run train step train_dict = {x_data: x_train_batch, y_output: y_train_batch, dropout_keep_prob:0.5} sess.run(train_step, feed_dict=train_dict) # Run loss and accuracy for training temp_train_loss, temp_train_acc = sess.run([loss, accuracy], feed_dict=train_dict) train_loss.append(temp_train_loss) train_accuracy.append(temp_train_acc) # Run Eval Step test_dict = {x_data: x_test, y_output: y_test, dropout_keep_prob:1.0} temp_test_loss, temp_test_acc = sess.run([loss, accuracy], feed_dict=test_dict) test_loss.append(temp_test_loss) test_accuracy.append(temp_test_acc) print('Epoch: {}, Test Loss: {:.2}, Test Acc: {:.2}'.format(epoch+1, temp_test_loss, temp_test_acc)) # Plot loss over time epoch_seq = np.arange(1, epochs+1) plt.plot(epoch_seq, train_loss, 'k--', label='Train Set') plt.plot(epoch_seq, test_loss, 'r-', label='Test Set') plt.title('Softmax Loss') plt.xlabel('Epochs') plt.ylabel('Softmax Loss') plt.legend(loc='upper left') plt.show() # Plot accuracy over time plt.plot(epoch_seq, train_accuracy, 'k--', label='Train Set') plt.plot(epoch_seq, test_accuracy, 'r-', label='Test Set') plt.title('Test Accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend(loc='upper left') plt.show()

Vocabulary Size: 1124

80-20 Train Test split: 4459 -- 1115

C:\Users\Diane\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_impl.py

基于TensorFlow的循环神经网络(RNN)的更多相关文章

  1. 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)

    循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...

  2. 通过keras例子理解LSTM 循环神经网络(RNN)

    博文的翻译和实践: Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras 正文 一个强大而流行的循环神经 ...

  3. 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别

    深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...

  4. 循环神经网络(RNN, Recurrent Neural Networks)介绍

    原文地址: http://blog.csdn.net/heyongluoyao8/article/details/48636251# 循环神经网络(RNN, Recurrent Neural Netw ...

  5. 用纯Python实现循环神经网络RNN向前传播过程(吴恩达DeepLearning.ai作业)

    Google TensorFlow程序员点赞的文章!   前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 ...

  6. 循环神经网络RNN及LSTM

    一.循环神经网络RNN RNN综述 https://juejin.im/entry/5b97e36cf265da0aa81be239 RNN中为什么要采用tanh而不是ReLu作为激活函数?  htt ...

  7. 循环神经网络RNN模型和长短时记忆系统LSTM

    传统DNN或者CNN无法对时间序列上的变化进行建模,即当前的预测只跟当前的输入样本相关,无法建立在时间或者先后顺序上出现在当前样本之前或者之后的样本之间的联系.实际的很多场景中,样本出现的时间顺序非常 ...

  8. 从网络架构方面简析循环神经网络RNN

    一.前言 1.1 诞生原因 在普通的前馈神经网络(如多层感知机MLP,卷积神经网络CNN)中,每次的输入都是独立的,即网络的输出依赖且仅依赖于当前输入,与过去一段时间内网络的输出无关.但是在现实生活中 ...

  9. 通俗易懂--循环神经网络(RNN)的网络结构!(TensorFlow实现)

    1. 什么是RNN 循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环 ...

随机推荐

  1. 2017.9.18 include指令和include动作有什么区别?

    问题:include指令和include动作有什么区别? 答:include指令合并静态文档或Jsp页面中的内容,可以用于包括动态生成的输出结果,因此可以包含一个Servlet include指令在编 ...

  2. 解决调用Office组件的问题

    在修改一个之前工作的好好的工具的时候出了如下错误: 无法将类型为“System.__ComObject”的 COM 对象强制转换为接口类型“Microsoft.Office.Interop.Excel ...

  3. redis list类型

  4. javaweb基础(38)_事务

    一.事务的概念 事务指逻辑上的一组操作,组成这组操作的各个单元,要不全部成功,要不全部不成功. 例如:A——B转帐,对应于如下两条sql语句  update from account set mone ...

  5. BeanNameAware接口和BeanFactoryAware接口(转)

              迄今为止,所接触到的Bean都是“无知觉”的,就像黑客帝国中机械工厂里面“养殖”的人类,他们虽然能完成一定的功能,但是根本不知道自己在工厂(BeanFactory)中的代号(id) ...

  6. 瓣呀,一个基于豆瓣api仿网易云音乐的开源项目

    整体采用material design 风格,本人是网易云音乐的粉丝,所以界面模仿了网页云音乐,另外,项目中尽量使用了5.0之后的新控件. 项目整体采用mvp+rxjava+retrofit 框架,使 ...

  7. DECODE函数简介

    在上一篇bolg中讲到ORACLE优化的时候提到DECODE()函数,以前自己用的也比较少,上网查了一下,还挺好用的一个函数,写下来希望对朋友们有帮助哈! https://www.cnblogs.co ...

  8. java基础 序列化反序列化流 实现Serializable 接口 自动装载序列号到对象文本文件如修改不能反序列化对象文本,除非自定义long型常量 打印流

    package com.swift.baseKnowledge; import java.io.File; import java.io.FileInputStream; import java.io ...

  9. Java 单词 day seven

    Constructor Constructor Constructor Constructor Constructor Constructor Constructor Constructor Cons ...

  10. Hive[6] HiveQL 查询

    6.1   SELECT ... FROM 语句    hive> SELECT name,salary FROM employees;    --普通查询 hive>SELECT e.n ...