UVa 11426 - GCD - Extreme (II) 转化+筛法生成欧拉函数表
《训练指南》p.125
设f[n] = gcd(1, n) + gcd(2, n) + …… + gcd(n - 1, n);
则所求答案为S[n] = f[2]+f[3]+……+f[n];
求出f[n]即可递推求得S[n]:S[n] = S[n - 1] + f[n];
所有gcd(x, n)的值都是n的约数,按照约数进行分类,令g(n, i)表示满足gcd(x, n) = i && x < n 的正整数x的个数,则f[n] = sum{ i * g(n, i) | n % i = 0 };
gcd( x, n ) = i 的充要条件为:gcd( x / i, n / i ) = 1; 因此满足条件的x/i有phi(n/i)个,说明g(n, i) = phi( n/i );
如果依次计算f[n],枚举f[n]的约数的话效率太低
因此对于每个i枚举它的倍数n并更新f[n],时间复杂度与素数筛法同阶。
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm> #define LL long long int using namespace std; const int MAXN = ; LL phi[MAXN];
LL S[MAXN];
LL f[MAXN]; //筛法计算欧拉数
void phi_table( int n )
{
for ( int i = ; i < n; ++i ) phi[i] = ;
phi[] = ;
for ( int i = ; i < n; ++i )
if ( !phi[i] )
{
for ( int j = i; j < n; j += i )
{
if ( !phi[j] )
phi[j] = j;
phi[j] = phi[j] / i * (i - );
}
}
return;
} int main()
{
phi_table( MAXN ); memset( f, , sizeof(f) );
for ( int i = ; i < MAXN; ++i )
for ( int j = i * ; j < MAXN; j += i )
f[j] += i * phi[j / i]; S[] = f[];
for ( int i = ; i < MAXN; ++i )
S[i] = S[ i - ] + f[i]; int n;
while ( scanf( "%d", &n ), n )
{
printf("%lld\n", S[n] );
}
return ;
}
UVa 11426 - GCD - Extreme (II) 转化+筛法生成欧拉函数表的更多相关文章
- UVA 11426 - GCD - Extreme (II) (数论)
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- bzoj 2190 线性生成欧拉函数表
首先我们知道,正方形内个是对称的,关于y=x对称,所以只需要算出来一半的人数 然后乘2+1就行了,+1是(1,1)这个点 开始我先想的递推 那么我们对于一半的三角形,一列一列的看,假设已经求好了第I- ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...
- UVA 11426 GCD - Extreme (II) (数论|欧拉函数)
题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...
- UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)
Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...
- UVA 11426 GCD - Extreme (II) 欧拉函数
分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)题解
思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...
随机推荐
- 你视为意见领袖的大 V,可能只是个僵尸号
今日导读 “高手在民间”这句话诚不欺我.互联网普及之后,民间大神在各大论坛如雨后春笋般涌现,忽而指点江山,笑谈国际风云,忽而算无遗策,狙击股市庄家,亦或退而求其次,美妆美食美颜,誓要带领少男少女冲在时 ...
- Media所有参数汇总
Media所有参数汇总 我们最常需要用到的媒体查询器的三个特性,大于,等于,小于的写法.媒体查询器的全部功能肯定不止这三个功能,下面是我总结的它的一些参数用法解释: width:浏览器可视宽度. he ...
- [vijos p1028] 魔族密码
描述 风之子刚走进他的考场,就……花花:当当当当~~偶是魅力女皇——花花!!^^(华丽出场,礼炮,鲜花)风之子:我呕……(杀死人的眼神)快说题目!否则……-_-###花花:……咦~~好冷~~我们现在要 ...
- CSU 1216异或最大值 (0-1 trie树)
Description 给定一些数,求这些数中两个数的异或值最大的那个值 Input 多组数据.第一行为数字个数n,1 <= n <= 10 ^ 5.接下来n行每行一个32位有符号非负整数 ...
- MARK 一条关于Linux 运维方面个人向收藏网址
吴钧泽博客 https://wujunze.com/archives.html Linux运维笔记 https://blog.linuxeye.cn/ Linux中文网 http://www.ppze ...
- dts--tests(四)
unit_tests.py """ DPDK Test suite. This TestSuite runs the unit tests included in DPD ...
- 《Python语言及其应用》学习笔记
第二章 ========== 对象的类型决定了可以对它进行的操作.对象的类型还决定了它装着的数据是允许被修改的变量(可变的),还是不可被修改的常量(不可变的). Python是强类型的,你永远无法修改 ...
- python中的列表内置方法小结
#!/usr/local/bin/python3 # -*- coding:utf-8 -*- ''' names=['zhangyu','mahongyan','zhangguobin','shac ...
- linux select用法
select 是linux i/o 复用技术之一 man 2 select #include <sys/select.h> /* According to earlier standard ...
- C语言进阶—— 单引号和双引号14
单引号和双引号 C语言中的单引号用来表示字符字面量 C语言中的双引号用来表示字符串字面量 ‘a’表示字符字面量,在内存中占用一个字节,'a'+1表示'a'的ASCII码加1,结果为'b' " ...