How It Works: CMemThread and Debugging Them
The wait type of CMemThread shows up in outputs such as sys.dm_exec_requests. This post is intended to explain what a CMemThread is and what you might be able to do to avoid the waits. The easiest way to describe a CMemThread is to talk about a standard Heap, HeapCreate and the options (with or without HEAP_NO_SERIALIZE).
Serialization is the a process of making sure only one thread of execution can execute a specific segment of code. The technique is most often talked about when talking about Windows Synchronization objects, such as, Mutexes and CriticalSections.
I think of it like the ticket dispenser. You get a ticket and wait your turn to be served. This just like a synchronization object, let’s look at an example.
EnterCriticalSection // Wait for your turn
dwVal++ // Do something that no other thread is allowed to do unless they have the ticket
LeaveCriticalSeciton // Allow the next ticket owner to execute the code
While the example is simplistic it quickly applies to a Heap. To allocate memory from a heap you would use HeapAlloc. The heap maintains various lists that can only be adjusted by one thread at a time or it would corrupt the lists. Let’s take a closer look at a high level heap design.
The heap can be made up of multiple segments (different ranges of memory) that are linked together and each segment can have used and free blocks of memory.
When a HeapAlloc takes place the heap will locate a free block to support the allocation, update the free list, update used information and could even allocate a new segment if necessary to create more free memory. The maintenance of the list(s) are important to making sure the heap structures properly remain intact. If multiple threads attempt to modify the heap structures, in parallel, the structures will become damaged and lead to memory corruption. (Scribblers:http://blogs.msdn.com/b/psssql/archive/2012/11/12/how-can-reference-counting-be-a-leading-memory-scribbler-cause.aspx)
When you create a heap with the HEAP_NO_SERIALIZE option your code must make sure you don’t make calls to HeapAlloc, HeapReAlloc, HeapFree, Heap* by more than one thread at a time. This is usually done using something like a CriticalSection around all Heap* invocations.
EnterCriticalSection
HeapAlloc
LeaveCriticalSection
EnterCriticalSection
HeapFree
LeaveCriticalSection
If you allow the Heap to maintain synchronization it will provide an efficient synchronization wrapper on your behalf so you don’t have additional synchronization mechanisms in your code.
CMemObj
SQL Server has a class named CMemObj that can be thought of as acting like a heap for the SQL Server developers. Instead of using HeapCreate the developer is calls CreateMemoryObject (often called a PMO – pointer to memory object) that is backed by the SQL Server memory manager. If you execute a select against sys.dm_os_memory_objects you can see the various memory objects currently in use by the SQL Server. The CMemObj is responsible for handling common activities such as Alloc, Free, ReAlloc, … as you would expect.
Think of the CMemObj as a HEAP_NO_SERIALIZE option for the SQL Server developer. It is not thread safe so the memory object should only be used by a single thread.
CMemThread
The CMemThread is the serialization wrapper around a CMemObj. For example the CMemThread::Alloc looks like the following.
CMemThread::Alloc(…)
{
Enter SOS_Mutex // CMEMTHREAD WAIT TYPE AND ACCUMULATION OCCURS HERE
CMemObj::Alloc(…) // __super::Alloc
Leave SOS_Mutex
}
The developer creates a memory object with the thread safe flag and SQL Server’s CreateMemoryObject will return a pointer to a CMemThread instead of the underlying CMemObj but overriding the necessary methods to provide the thread safe wrapper so the developer can share the memory object among any thread.
When you get a CMEMTHREAD wait you are observing multi-threaded access to the same CMemObj causing a wait while another thread is completing Alloc, Free, …. This is to be expected as long as the wait does not become excessive. When the number of waits and wait time start to become significant it can indicate that you need to release the pressure on the specific memory object.
3 Types
There are 3 types of memory objects (Global, Per Numa Node, Per CPU). For scalability SQL Server will allow a memory object to be segmented so only threads on the same node or cpu have the same underlying CMemObj, reducing thread interactions from other nodes or cpus, thereby increasing performance and scalability.
Many of the SQL Server memory objects are already segmented by node or cpu and provide scalability. Reference the following post for more details: http://blogs.msdn.com/b/psssql/archive/2011/09/01/sql-server-2008-2008-r2-on-newer-machines-with-more-than-8-cpus-presented-per-numa-node-may-need-trace-flag-8048.aspx
bThreadSafe = 0x2,
bPartitionedByCpu = 0x40,
bPartitionedByNode = 0x80, -T8048 upgrade from by Node to by CPU (Can’t upgrade from global to by CPU)
Looking at the creation_options in sys.dm_os_memory_objects you can determine if the memory object is partitioned and if so to what degree, node or cpu. If the object is not partitioned (global) the trace flag has no impact on upgrading the partitioning scheme.
Here is an example that shows the active memory objects that are partitioned by cpu.
select * from sys.dm_os_memory_objects
where 0x40 = creation_options & 0x40
Will TF 8048 Help Reduce CMEMTHREAD Waits?
Here is a query that you can run on your box when you see high CMEMTHREAD waits.
SELECT
type, pages_in_bytes,
CASE
WHEN (0x20 = creation_options & 0x20) THEN ‘Global PMO. Cannot be partitioned by CPU/NUMA Node. TF 8048 not applicable.’
WHEN (0x40 = creation_options & 0x40) THEN ‘Partitioned by CPU.TF 8048 not applicable.’
WHEN (0x80 = creation_options & 0x80) THEN ‘Partitioned by Node. Use TF 8048 to further partition by CPU’
ELSE ‘UNKNOWN’
END
from sys.dm_os_memory_objects
order by pages_in_bytes desc
If you see the top consumers being of type ‘Partitioned by Node.’, you may use startup, trace flag 8048 to further partition by CPU.
Note: Trace flag 8048 is a startup trace flag.
Removing Hot Memory Object
· If the memory object is NUMA partitioned you may be able to use the trace flag to further partition the object and increase performance.
· If the memory object is global or already partitioned by CPU you need to study and tune the queries impacting the memory object.
Troubleshooting
To troubleshoot this issue, we need to understand the code path that is causing contention on a memory object.
An example of this is the memory object used to track allocations for create table. The stack for which looks like the following:
00 sqlservr!CMemThread<CMemObj>::Alloc
01 sqlservr!operator new
02 sqlservr!HoBtFactory::AllocateHoBt
03 sqlservr!HoBtFactory::GetFreeHoBt
04 sqlservr!HoBtFactory::GetHoBtAccess
05 sqlservr!HoBtAccess::Init
06 sqlservr!HoBtFactory::CreateHoBt
07 sqlservr!SECreateRowset
08 sqlservr!DDLAgent::SECreateRowsets
09 sqlservr!CIndexDDL::CreateRowsets
0a sqlservr!CIndexDDL::CreateEmptyHeap
…
Starting a workload of create table(s) can cause the specific memory object contention as shown in the following stack trace.
00 ntdll!NtSignalAndWaitForSingleObject
01 KERNELBASE!SignalObjectAndWait
02 sqlservr!SOS_Scheduler::Switch
03 sqlservr!SOS_Scheduler::SuspendNonPreemptive
04 sqlservr!SOS_Scheduler::Suspend
05 sqlservr!EventInternal<Spinlock<154,1,0> >::Wait
06 sqlservr!SOS_UnfairMutexPair::LongWait
07 sqlservr!SOS_UnfairMutexPair::AcquirePair
08 sqlservr!CMemThread<CMemObj>::Alloc
09 sqlservr!operator new
0a sqlservr!HoBtFactory::AllocateHoBt
0b sqlservr!HoBtFactory::GetFreeHoBt
0c sqlservr!HoBtFactory::GetHoBtAccess
0d sqlservr!HoBtAccess::Init
0e sqlservr!HoBtFactory::CreateHoBt
0f sqlservr!SECreateRowset
10 sqlservr!DDLAgent::SECreateRowsets
11 sqlservr!CIndexDDL::CreateRowsets
12 sqlservr!CIndexDDL::CreateEmptyHeap
…
The call to sqlservr!SOS_UnfairMutexPair::LongWait, from a memory object, results in the CMEMTHREAD wait. You can use the following query to see wait information related to sessions and requests.
select r.session_id,r.wait_type,r.wait_time,r.wait_resource
from sys.dm_exec_requests r
join sys.dm_exec_sessions s
on s.session_id=r.session_id and s.is_user_process=1
session_id wait_type wait_time wait_resource
———- ————— ———– —————
54 NULL 0
55 NULL 0
56 CMEMTHREAD 17062
57 CMEMTHREAD 17062
58 CMEMTHREAD 17063
59 CMEMTHREAD 17063
60 CMEMTHREAD 17062
Use Extended Events and collect call stacks for all waits on CMEMTHREAD using an asynchronous bucketizer (or histogram in SQL Server 2012.)
–First get the map_key for CMEMTHREAD wait type from the name-value pairs for all wait types stored in sys.dm_xe_map_values
–NOTE :- These map values are different b/w SQL Server 2008 R2 and 2012
select m.* from sys.dm_xe_map_values m
join sys.dm_xe_packages p on m.object_package_guid = p.guid
where p.name = ‘sqlos’ and m.name = ‘wait_types’
and m.map_value = ‘CMEMTHREAD’
/*
name object_package_guid map_key map_value
———————————————————— ———————————— ———– —————
wait_types BD97CC63-3F38-4922-AA93-607BD12E78B2186 CMEMTHREAD
*/
–Create an Extended Events session to capture callstacks for CMEMTHREAD waits ( map_key=186 on SQL Server 2008 R2)
–Create an Extended Events session to capture callstacks for CMEMTHREAD waits ( map_key=186 on SQL Server 2008 R2)
IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name=‘XeWaitsOnCMemThread’)
DROP EVENT SESSION [XeWaitsOnCMemThread] ON SERVER
CREATE EVENT SESSION [XeWaitsOnCMemThread] ON SERVER
ADD EVENT sqlos.wait_info(
ACTION(package0.callstack,sqlserver.session_id,sqlserver.sql_text)
WHERE (
[wait_type]=(186)) –map_key for CMEMTHREAD on SQL Server 2008 R2)
AND [opcode] = (1)
AND [duration]> 5000 — waits exceed 5 seconds
)
ADD TARGET package0.asynchronous_bucketizer
(SET filtering_event_name=N’sqlos.wait_info’,
source_type=1,
source=N’package0.callstack’)
WITH (MAX_MEMORY=4096 KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,
MAX_DISPATCH_LATENCY=5 SECONDS,MAX_EVENT_SIZE=0 KB,MEMORY_PARTITION_MODE=NONE,TRACK_CAUSALITY=OFF,STARTUP_STATE=OFF)
GO
–Create second Xevent session to generate a mini dump of all threads for the first two wait events catpured for CMEMTHREAD
IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name=‘XeDumpOnCMemThread’)
DROP EVENT SESSION [XeDumpOnCMemThread] ON SERVER
CREATE EVENT SESSION [XeDumpOnCMemThread] ON SERVER
ADD EVENT sqlos.wait_info(
ACTION(sqlserver.session_id,sqlserver.sql_text,sqlserver.create_dump_all_threads)
WHERE (
[wait_type]=(186)) –map_key for CMEMTHREAD on SQL Server 2008 R2)
AND [opcode] = (1)
AND [duration]> 5000 — waits exceed 5 seconds
AND package0.counter <=2 –number of times to generate a dump
)
add target package0.ring_buffer
WITH (MAX_MEMORY=4096 KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,
MAX_DISPATCH_LATENCY=5 SECONDS,MAX_EVENT_SIZE=0 KB,MEMORY_PARTITION_MODE=NONE,TRACK_CAUSALITY=OFF,STARTUP_STATE=OFF)
GO
–Start the sessions
ALTER EVENT SESSION [XeWaitsOnCMemThread] ON SERVER STATE=START
GO
ALTER EVENT SESSION [XeDumpOnCMemThread] ON SERVER STATE=START
GO
When you collect data using the histogram target, you can acquire the un-symbolized call stack using the following query.
SELECT
n.value(‘(@count)[1]’, ‘int’) AS EventCount,
n.value(‘(@trunc)[1]’, ‘int’) AS EventsTrunc,
n.value(‘(value)[1]’, ‘varchar(max)’) AS CallStack
FROM
(SELECT CAST(target_data as XML) target_data
FROM sys.dm_xe_sessions AS s
JOIN sys.dm_xe_session_targets t
ON s.address = t.event_session_address
WHERE s.name = ‘XeWaitsOnCMemThread’
AND t.target_name = ‘asynchronous_bucketizer’) as tab
CROSS APPLY target_data.nodes(‘BucketizerTarget/Slot’) as q(n)
EventCount EventsTrunc CallStack
————————————————————————————–
1 0 0x0000000001738BD8
0x0000000000E53F8B
0x0000000000E541C1
0x0000000000E529B6
0x0000000000FBF22A
0x0000000000F763CB
0x0000000000E578C4
0x0000000000E56DFA
0x0000000000F86416
…
Symbolize the stack addresses to function/method names using the ln command (Windows Debugger) and public symbols against the dump that was captured, as shown below.
Note: The mini-dump capture is important because it contains the image versions, locations and sizes at the time the XEL capture took place.
0:049> .sympath SRV*c:\symcache_pub*http://msdl.microsoft.com/download/symbols
Symbol search path is: SRV*c:\symcache_pub*http://msdl.microsoft.com/download/symbols
Expanded Symbol search path is: srv*c:\symcache_pub*http://msdl.microsoft.com/download/symbols
0:049> .reload /f sqlservr.exe
0:049> ln 0x0000000001738BD8
(00000000`00e5462c) sqlservr!XeSosPkg::wait_info::Publish+0xe2 | (00000000`00e5471c) sqlservr!SETaskSuspendingNotification
0:049> ln 0x0000000001738BD8;ln 0x0000000000E53F8B;ln 0x0000000000E541C1;ln 0x0000000000E529B6;;ln 0x0000000000FBF22A;ln 0x0000000000F763CB;ln 0x0000000000E578C4;ln 0x0000000000E56DFA;ln 0x0000000000F86416;ln 0x0000000000F7D922;ln 0x0000000000F87943;ln 0x0000000000F0083B;ln 0x0000000000F05D00
(00000000`00e5462c) sqlservr!XeSosPkg::wait_info::Publish+0xe2
(00000000`00e53d58) sqlservr!SOS_Scheduler::UpdateWaitTimeStats+0x286
(00000000`00e54174) sqlservr!SOS_Task::PostWait+0x4d
(00000000`00e52890) sqlservr!EventInternal<Spinlock<154,1,0> >::Wait+0x1b2
(00000000`00f7628c) sqlservr!SOS_UnfairMutexPair::LongWait+0x104
(00000000`00e577f4) sqlservr!SOS_UnfairMutexPair::AcquirePair+0x46
(00000000`00e57858) sqlservr!CMemThread<CMemObj>::Alloc+0x6c
(00000000`00e56ddc) sqlservr!operator new+0x1e
(00000000`00f7d930) sqlservr!HoBtFactory::AllocateHoBt+0xba
(00000000`00ef4a38) sqlservr!HoBtFactory::GetFreeHoBt+0x12a
…
Once you have a symbolized stack you have a better understanding of the memory, contention point as well as the command(s) that are contributing to the contention. Using the trace flag or changing the query can remove the contention and improve SQL Server performance.
How It Works: CMemThread and Debugging Them的更多相关文章
- How those spring enable annotations work--转
原文地址:http://blog.fawnanddoug.com/2012/08/how-those-spring-enable-annotations-work.html Spring's Java ...
- SpringBoot(六):springboot热部署
在j2ee项目开发中,热部署插件是JRebel.JRebel的使用为开发人员带来了极大的帮助,且挺高了开发便捷.而在SpringBoot开发生态环境中,SpringBoot热部署常用插件是:sprin ...
- SpringBoot学习17:springboot热部署配置
spring为开发者提供了一个名为spring-boot-devtools的模块来使Spring Boot应用支持热部署,提高开发者的开发效率,无需手动重启Spring Boot应用. devtool ...
- SpringBoot: 17.热部署配置(转)
spring为开发者提供了一个名为spring-boot-devtools的模块来使Spring Boot应用支持热部署,提高开发者的开发效率,无需手动重启Spring Boot应用. devtool ...
- scrapydWeb安装和使用
1. 安装:pip install scrapydweb 2. 启动:scrapydweb 第一次执行,当前目录会生产配置文件:scrapydweb_settings_v8.py 配置账户和密码: # ...
- Debugging JTAG Connectivity Problems
2013-12-04 22:34:26 转自:http://processors.wiki.ti.com/index.php/Debugging_JTAG_Connectivity_Problems ...
- NDK(7)NDK debugging without root access
from : http://ian-ni-lewis.blogspot.com/2011/05/ndk-debugging-without-root-access.html NDK debugging ...
- [转]Debugging the Mac OS X kernel with VMware and GDB
Source: http://ho.ax/posts/2012/02/debugging-the-mac-os-x-kernel-with-vmware-and-gdb/ Source: http:/ ...
- Debugging java application with netbean
Debugging Java Applications with NetBeans from:https://manikandanmv.wordpress.com/2009/09/24/debu ...
随机推荐
- 摘要算法---hashlib模块下MD5和SHA的使用
作用: 任意长度的字符串内容通过摘要算法都可以生成唯一序列摘要值,通过摘要算法,可以校验某个文档或者某组字符串是否被修改. 应用: 1.文件内容一致性校验 2.用户登录验证 常用方法 update() ...
- SQL Server学习之路(一):建立数据库、建立表
0.目录 1.前言 2.建立数据库 2.1 通过SSMS建立数据库 2.2 通过SQL语句建立数据库 3.建立表 3.1 通过SSMS建立表 3.2 通过SQL语句建立表 1.前言 配置是win10+ ...
- html5的结构
目录 一.新增的主体结构元素 1.1.article元素 1.2.section元素 1.3.nav元素 1.4.aside元素 1.5.time元素 1.6.pubdate元素 二.新增的非主体结构 ...
- 使用Dagger2做静态注入, 对比Guice.
Dagger 依赖注入的诉求, 这边就不重复描述了, 在上文Spring以及Guice的IOC文档中都有提及, 既然有了Guice, Google为啥还要搞个Dagger2出来重复造轮子呢? 因为使用 ...
- HDU 1671 Phone List (Trie)
pid=1671">Phone List Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- hihoCoder_二分·归并排序之逆序对
一.题目 题目1 : 二分·归并排序之逆序对 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 在上一回.上上回以及上上上回里我们知道Nettle在玩<艦これ&g ...
- 导出Excel1 - 项目分解篇
我们在全部的MIS系统(信息管理系统)中都能见到他.所以我们把这个通用功能提出来. 项目名称:车辆信息管理系统(中石化石炼) 项目负责人:xiaobin 项目时间:2006.12 - 2007.2 E ...
- hdu4553约会安排 线段树
//DS QT 找一段最靠前的长度为QT的空间 //NS QT 找一段最靠前的长度为QT的空间.假设没找到能够将DS占领的空间当做空暇空间,找一段最靠前的空间 //STUDY!! L R 清空L ...
- ASP.NET Core WebApi 返回统一格式参数(Json 中 Null 替换为空字符串)
相关博文:ASP.NET Core WebApi 返回统一格式参数 业务场景: 统一返回格式参数中,如果包含 Null 值,调用方会不太好处理,需要替换为空字符串,示例: { "respon ...
- python中对象、类型和元类之间的关系
在python中对象.类型和元类构成了一个微妙的世界. 他们有在这个世界里和平共处,相辅相成.它们遵循着几条亘古不变的定律: 1.python中无处不对象 2.所有对象都有三种特性:id.类型.值 3 ...