BZOJ 1061: [Noi2008]志愿者招募
1061: [Noi2008]志愿者招募
Time Limit: 20 Sec Memory Limit: 162 MB
Submit: 4064 Solved: 2476
[Submit][Status][Discuss]
Description
Input
Output
仅包含一个整数,表示你所设计的最优方案的总费用。
Sample Input
2 3 4
1 2 2
2 3 5
3 3 2
Sample Output
HINT
1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。
Source
分析:
%LYD...
这道题普遍做法貌似都是线性规划单纯形的做法,LYD告诉我们可以跑上下界最小费用可行流...
我们把每一天看成一个点,然后从i向i+1连边,上界为inf,下界为ai,费用为0...
然后对于每一类志愿者,从ti+1到si连边,上界为inf,下界为0,费用为ci...这样每花费ci的代价,就从si到ti增加一个流...
然后就转化成了无源汇上下界最小费用可行流,其实就是把无源汇上下界可行流的最大流转化成最小费用最大流...
怎么求无源汇上下界可行流?
如果把C-B作为容量上界,0作为容量下界,就是一般的网络流模型。
然而求出的实际流量为f(u,v)+B(u,v),不一定满足流量守恒,需要调整。
设inB[u]=∑B(i,u),outB[u]=∑B(u,i),d[u]=inB[u]-outB[u]。
新建源汇,S向d>0的点连边,d<0的点向汇点连边,容量为相应的d。 在该网络上求最大流,则每条边的流量+下界就是原网络的一个可行流。
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
//by NeighThorn
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f
using namespace std; const int maxn=+,maxm=+; int n,m,S,T,cnt,w[maxm],hd[maxn],fl[maxm],to[maxm],nxt[maxm],Min[maxn],vis[maxn],from[maxn]; long long dis[maxn],dif[maxn]; inline bool spfa(void){
for(int i=S;i<=T;i++)
dis[i]=INF,Min[i]=inf;
queue<int> q;q.push(S),vis[S]=,dis[S]=;
while(!q.empty()){
int top=q.front();q.pop();vis[top]=;
for(int i=hd[top];i!=-;i=nxt[i])
if(dis[to[i]]>dis[top]+w[i]&&fl[i]){
from[to[i]]=i;
dis[to[i]]=dis[top]+w[i];
Min[to[i]]=min(Min[top],fl[i]);
if(!vis[to[i]])
vis[to[i]]=,q.push(to[i]);
}
}
return dis[T]!=INF;
} inline long long find(void){
for(int i=T;i!=S;i=to[from[i]^])
fl[from[i]]-=Min[T],fl[from[i]^]+=Min[T];
return dis[T]*Min[T];
} inline int dinic(void){
int res=;
while(spfa())
res+=find();
return res;
} inline void add(int l,int s,int x,int y){
w[cnt]=l;fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
w[cnt]=-l;fl[cnt]=;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} signed main(void){
// freopen("in.txt","r",stdin);
memset(hd,-,sizeof(hd));
scanf("%d%d",&n,&m);S=,T=n+;
for(int i=,y;i<=n;i++)
scanf("%d",&y),add(,inf,i,i+),dif[i]-=y,dif[i+]+=y;
for(int i=,s,x,y;i<=m;i++)
scanf("%d%d%d",&x,&y,&s),add(s,inf,y+,x);
for(int i=;i<=n+;i++){
if(dif[i]>)
add(,dif[i],S,i);
else if(dif[i]<)
add(,-dif[i],i,T);
}
printf("%d\n",dinic());
return ;
}
By NeighThorn
BZOJ 1061: [Noi2008]志愿者招募的更多相关文章
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 费用流
1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...
- BZOJ 1061: [Noi2008]志愿者招募【单纯形裸题】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4813 Solved: 2877[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记看另一篇吧】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- BZOJ.1061.[NOI2008]志愿者招募(线性规划 对偶原理 单纯形 / 费用流SPFA)
题目链接 线性规划 用\(A_{ij}=0/1\)表示第\(i\)天\(j\)类志愿者能否被招募,\(x_i\)为\(i\)类志愿者招募了多少人,\(need_i\)表示第\(i\)天需要多少人,\( ...
- BZOJ 1061: [Noi2008]志愿者招募(线性规划与网络流)
http://www.lydsy.com/JudgeOnline/problem.php?id=1061 题意: 思路: 直接放上大神的建模过程!!!(https://www.byvoid.com/z ...
- 【刷题】BZOJ 1061 [Noi2008]志愿者招募
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完 ...
- BZOJ 1061 [Noi2008]志愿者招募(费用流)
题目描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完成,其中第i ...
- bzoj 1061 [Noi2008]志愿者招募(数学模型,MCMF)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1061 [题意] 雇人满足每天至少需要的人数. [思路一] Byvoid的题解 clic ...
随机推荐
- Oracle 11.2.0.4单实例打PSU,OJVM PSU补丁快速参考
写在前面: 1.Oracel打每个补丁的操作有时存在差异,所以不管多熟悉,都应该在打任何补丁之前阅读新补丁中附带的readme. 2.Oracle每季度都会更新一个最新的PSU,本文最新指的是当前最新 ...
- 用php实现一个简单的链式操作
最近在读<php核心技术与最佳实践>这本书,书中第一章提到用__call()方法可以实现一个简单的字符串链式操作,比如,下面这个过滤字符串然后再求长度的操作,一般要这么写: strlen( ...
- 我为什么要自己编译openjdk8以及那些坑
我为什么要自己编译openjdk8以及那些坑 这是笔者第二次编译openjdk, 第一次编译的是openjdk7,那么好多人会好奇,为什么要自己编译openjdk呢,官方不是已经发布了安装包了么? 要 ...
- golang 使用 iota
iota是golang语言的常量计数器,只能在常量的表达式中使用. iota在const关键字出现时将被重置为0(const内部的第一行之前),const中每新增一行常量声明将使iota计数一次(io ...
- 【中文分词】隐马尔可夫模型HMM
Nianwen Xue在<Chinese Word Segmentation as Character Tagging>中将中文分词视作为序列标注问题(sequence labeling ...
- [WinForm]WinForm跨线程UI操作常用控件类大全
前言 在C#开发的WinForm窗体程序开发的时候,经常会使用多线程处理一些比较耗时之类的操作.不过会有一个问题:就是涉及到跨线程操作UI元素. 相信才开始接触的人一定会遇上这个问题. 为了解决这个问 ...
- Entity Framework 教程——模型浏览器
模型浏览器: 在之前的章节中,我们创建了第一个关于学校的实体数据模型.但是EDM设计器并没有将他所创建的所有对象完全显示出来.它只将数据库中的被选择的表与视图显示出来了. 模型浏览器可以将EDM所创建 ...
- StackExchange.Redis帮助类解决方案RedisRepository封装(字符串类型数据操作)
本文版权归博客园和作者本人共同所有,转载和爬虫请注明原文链接 http://www.cnblogs.com/tdws/tag/NoSql/ 目录 一.基础配置封装 二.String字符串类型数据操作封 ...
- ubuntu学习的简单笔记
l vi编辑器开发步骤 A)输入 vi Hello.java B) 输入 i 插入模式. C)输入 冒号.[保存退出:wq][退出不保存:q!] l 列出当前目录的所有文件:ls 详细信息的列表:ls ...
- redis 安装
安装wget http://download.redis.io/releases/redis-3.2.3.tar.gztar -xzvf redis-3.2.3.tar.gzcd redis-3.2. ...