1061: [Noi2008]志愿者招募

Time Limit: 20 Sec  Memory Limit: 162 MB
Submit: 4064  Solved: 2476
[Submit][Status][Discuss]

Description

  申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难
题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要
Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用
是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这
并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。

Input

  第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负
整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了
方便起见,我们可以认为每类志愿者的数量都是无限多的。

Output

  仅包含一个整数,表示你所设计的最优方案的总费用。

Sample Input

3 3
2 3 4
1 2 2
2 3 5
3 3 2

Sample Output

14

HINT

1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。

Source

分析:

%LYD...

这道题普遍做法貌似都是线性规划单纯形的做法,LYD告诉我们可以跑上下界最小费用可行流...

我们把每一天看成一个点,然后从i向i+1连边,上界为inf,下界为ai,费用为0...

然后对于每一类志愿者,从ti+1到si连边,上界为inf,下界为0,费用为ci...这样每花费ci的代价,就从si到ti增加一个流...

然后就转化成了无源汇上下界最小费用可行流,其实就是把无源汇上下界可行流的最大流转化成最小费用最大流...

怎么求无源汇上下界可行流?

如果把C-B作为容量上界,0作为容量下界,就是一般的网络流模型。

然而求出的实际流量为f(u,v)+B(u,v),不一定满足流量守恒,需要调整。

设inB[u]=∑B(i,u),outB[u]=∑B(u,i),d[u]=inB[u]-outB[u]。

新建源汇,S向d>0的点连边,d<0的点向汇点连边,容量为相应的d。 在该网络上求最大流,则每条边的流量+下界就是原网络的一个可行流。

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
//by NeighThorn
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f
using namespace std; const int maxn=+,maxm=+; int n,m,S,T,cnt,w[maxm],hd[maxn],fl[maxm],to[maxm],nxt[maxm],Min[maxn],vis[maxn],from[maxn]; long long dis[maxn],dif[maxn]; inline bool spfa(void){
for(int i=S;i<=T;i++)
dis[i]=INF,Min[i]=inf;
queue<int> q;q.push(S),vis[S]=,dis[S]=;
while(!q.empty()){
int top=q.front();q.pop();vis[top]=;
for(int i=hd[top];i!=-;i=nxt[i])
if(dis[to[i]]>dis[top]+w[i]&&fl[i]){
from[to[i]]=i;
dis[to[i]]=dis[top]+w[i];
Min[to[i]]=min(Min[top],fl[i]);
if(!vis[to[i]])
vis[to[i]]=,q.push(to[i]);
}
}
return dis[T]!=INF;
} inline long long find(void){
for(int i=T;i!=S;i=to[from[i]^])
fl[from[i]]-=Min[T],fl[from[i]^]+=Min[T];
return dis[T]*Min[T];
} inline int dinic(void){
int res=;
while(spfa())
res+=find();
return res;
} inline void add(int l,int s,int x,int y){
w[cnt]=l;fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
w[cnt]=-l;fl[cnt]=;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} signed main(void){
// freopen("in.txt","r",stdin);
memset(hd,-,sizeof(hd));
scanf("%d%d",&n,&m);S=,T=n+;
for(int i=,y;i<=n;i++)
scanf("%d",&y),add(,inf,i,i+),dif[i]-=y,dif[i+]+=y;
for(int i=,s,x,y;i<=m;i++)
scanf("%d%d%d",&x,&y,&s),add(s,inf,y+,x);
for(int i=;i<=n+;i++){
if(dif[i]>)
add(,dif[i],S,i);
else if(dif[i]<)
add(,-dif[i],i,T);
}
printf("%d\n",dinic());
return ;
}

By NeighThorn

BZOJ 1061: [Noi2008]志愿者招募的更多相关文章

  1. BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记】

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3975  Solved: 2421[Submit][Stat ...

  2. BZOJ 1061: [Noi2008]志愿者招募 费用流

    1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...

  3. BZOJ 1061: [Noi2008]志愿者招募【单纯形裸题】

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4813  Solved: 2877[Submit][Stat ...

  4. BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记看另一篇吧】

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3975  Solved: 2421[Submit][Stat ...

  5. BZOJ.1061.[NOI2008]志愿者招募(线性规划 对偶原理 单纯形 / 费用流SPFA)

    题目链接 线性规划 用\(A_{ij}=0/1\)表示第\(i\)天\(j\)类志愿者能否被招募,\(x_i\)为\(i\)类志愿者招募了多少人,\(need_i\)表示第\(i\)天需要多少人,\( ...

  6. BZOJ 1061: [Noi2008]志愿者招募(线性规划与网络流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 题意: 思路: 直接放上大神的建模过程!!!(https://www.byvoid.com/z ...

  7. 【刷题】BZOJ 1061 [Noi2008]志愿者招募

    Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完 ...

  8. BZOJ 1061 [Noi2008]志愿者招募(费用流)

    题目描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完成,其中第i ...

  9. bzoj 1061 [Noi2008]志愿者招募(数学模型,MCMF)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1061 [题意] 雇人满足每天至少需要的人数. [思路一] Byvoid的题解 clic ...

随机推荐

  1. 聊聊excel生成图片的几种方式

    目录     I:需求.  II:实现思路.     III:实现方式.     IV:优缺点分析.     V:结论.     VI:wps安装与配置. 正文 1.需求:把excel生成等比的图片. ...

  2. 趣说游戏AI开发:对状态机的褒扬和批判

    0x00 前言 因为临近年关工作繁忙,已经有一段时间没有更新博客了.到了元旦终于有时间来写点东西,既是积累也是分享.如题目所示,本文要来聊一聊在游戏开发中经常会涉及到的话题--游戏AI.设计游戏AI的 ...

  3. 13.JAVA之GUI编程将程序打包jar

    jar基本命令: 目标:将下列MyMenuDemo.java代码打包成jar. 方法如下: 1.把java代码放到d:\myclass目录下. 2.按下快捷键ctrl+r,打开运行窗口,输入cmd后回 ...

  4. CSS知识总结(二)

    CSS的选择符分成: 1. 通配选择符 2. 元素选择符 3. 群组选择符 4. 关系选择符 5. id及class选择符 6. 伪类选择符 7. 属性选择符 8. 伪对象选择符 1.通配选择符(*) ...

  5. 给 DevOps 初学者的入门指南

    当我们谈到 DevOps 时,可能讨论的是:流程和管理,运维和自动化,架构和服务,以及文化和组织等等概念.那么,到底什么是"DevOps"呢? 什么是DevOps 随着软件发布迭代 ...

  6. 前端开发:setTimeout与setInterval 定时器与异步循环数组

    前端开发:setTimeout与setInterval 定时器与异步循环数组 前言: 开通博客园三个月以来,随笔记录了工作中遇到的大大小小的难题,也看过无数篇令人启发的文章,我觉得这样的环境是极好的, ...

  7. Node.js写文件的三种方法

    Node.js写文件的三种方式: 1.通过管道流写文件 采用管道传输二进制流,可以实现自动管理流,可写流不必当心可读流流的过快而崩溃,适合大小文件传输(推荐) var readStream = fs. ...

  8. El表达式的关系运算符

    El表达式的关系运算符: ==  对应  eq !=   对应  ne >    对应  gt <    对应  It

  9. GJM : Unity3D HIAR -【 快速入门 】 五、导出 Android 工程、应用

    导出 Android 工程.应用 在开始之前,请务必先保存您的工程,同时确认您已经安装 Android SDK 和 JDK.安装操作请参考以下链接: 搭建开发环境 Step 1. 设置 Android ...

  10. 《分布式事务解决之道》沙龙ppt共享

    大型分布式系统往往由很多“微服务”组成,而不同的微服务往往又连接着不同的数据库,在看似常用的功能背后,可能又需要横跨不同的“微服务”和“数据库”才能实现.那么如何才能保证系统事务的一致性呢?这也同时是 ...