[array] leetcode - 39. Combination Sum - Medium
leetcode - 39. Combination Sum - Medium
descrition
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,
A solution set is:
[
[7],
[2, 2, 3]
]
解析
典型的回溯法求解。代码实现中给出了 3 中回溯的方式,都 accepted。微妙的区别应该是在递归的层数不同。对于 candidates[index] 只有两种情况,即:选择或不选择,值得注意的是如果选择的话可以多次重复选择。(可以使用状态转换图进行抽象更便于理解,重复选择实际上是在 index 状态有环,而不选择则是向 index + 1 状态的迁移)
注意:
- 调用函数前用了一个排序,主要是为了递归时剪枝做准备,数组是递增排序,如果太大则可以停止更深层的递归
- 题目说了所有数都是 positive,这其实也可以作为剪枝的条件
- 题目说数组中不存在 duplicate 元素,如果存在的话还需要跳过重复的元素。
一般的,对于回溯问题,找好递归求解的子结构,记得结束点即出口的检查,避免无限循环。在递归过程中可以思考是否可以进行剪枝。
code
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
class Solution{
public:
vector<vector<int> > combinationSum(vector<int>& candidates, int target){
vector<vector<int> > ans;
vector<int> vecCur;
sort(candidates.begin(), candidates.end());
combinationSumBacktracking0(candidates, 0, target, vecCur, ans);
//combinationSumBacktracking1(candidates, 0, target, vecCur, ans);
//combinationSumBacktracking2(candidates, 0, target, vecCur, ans);
return ans;
}
// candidates in ascending
void combinationSumBacktracking0(vector<int>& candidates, int index, int target,
vector<int>& vecCur, vector<vector<int> >& ans){
if(target < 0)
return;
if(target == 0 && !vecCur.empty()){
ans.push_back(vecCur);
return;
}
// sub-problem, for each element in candidates[index,...,n-1]
// just have two condition: choose or not
for(int i=index; i<candidates.size(); i++){
if(candidates[i] > target) // Note: candidates must in ascending order
break;
// note: not i+1, because the same repeaded number may be chosen from candidates
vecCur.push_back(candidates[i]);
combinationSumBacktracking0(candidates, i, target - candidates[i], vecCur, ans);
vecCur.pop_back();
}
}
void combinationSumBacktracking1(vector<int>& candidates, int index, int target,
vector<int>& vecCur, vector<vector<int> >& ans){
if(target < 0)
return;
if(target == 0){
if(!vecCur.empty())
ans.push_back(vecCur);
return;
}
if(index >= candidates.size())
return;
// choose candidates[index]
// Note: candidates[index] can be choose more than onece
vecCur.push_back(candidates[index]);
combinationSumBacktracking1(candidates, index, target - candidates[index], vecCur, ans);
vecCur.pop_back();
// dosen't choose candidates[index]
combinationSumBacktracking1(candidates, index+1, target, vecCur, ans);
}
void combinationSumBacktracking2(vector<int>& candidates, int index, int target,
vector<int>& vecCur, vector<vector<int> >& ans){
if(target < 0)
return;
if(target == 0){
if(!vecCur.empty())
ans.push_back(vecCur);
return;
}
if(index >= candidates.size())
return;
// choose candidates[index] more than times
int i = 1;
for(; i*candidates[index] <= target; i++){
vecCur.push_back(candidates[index]);
combinationSumBacktracking2(candidates, index+1, target - i*candidates[index], vecCur, ans);
}
for(int j=i-1; j>=1; j--)
vecCur.pop_back();
// don't choose candidates[index]
combinationSumBacktracking2(candidates, index+1, target, vecCur, ans);
}
};
int main()
{
return 0;
}
[array] leetcode - 39. Combination Sum - Medium的更多相关文章
- [array] leetcode - 40. Combination Sum II - Medium
leetcode - 40. Combination Sum II - Medium descrition Given a collection of candidate numbers (C) an ...
- leetcode 39. Combination Sum 、40. Combination Sum II 、216. Combination Sum III
39. Combination Sum 依旧与subsets问题相似,每次选择这个数是否参加到求和中 因为是可以重复的,所以每次递归还是在i上,如果不能重复,就可以变成i+1 class Soluti ...
- [LeetCode] 39. Combination Sum 组合之和
Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), fin ...
- LeetCode 39. Combination Sum (组合的和)
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique c ...
- Java [Leetcode 39]Combination Sum
题目描述: Given a set of candidate numbers (C) and a target number (T), find all unique combinations in ...
- LeetCode 39 Combination Sum(满足求和等于target的所有组合)
题目链接: https://leetcode.com/problems/combination-sum/?tab=Description Problem: 给定数组并且给定一个target,求出所 ...
- [LeetCode] 39. Combination Sum ☆☆☆(数组相加等于指定的数)
https://leetcode.wang/leetCode-39-Combination-Sum.html 描述 Given a set of candidate numbers (candidat ...
- Leetcode 39. Combination Sum
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique c ...
- leetcode 39 Combination Sum --- java
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...
随机推荐
- 【转】Java中用单例模式有什么好处
Java Singleton模式主要作用是保证在Java应用程序中,一个类Class只有一个实例存在. 使用Singleton的好处还在于可以节省内存,因为它限制了实例的个数,有利于Java垃圾回收( ...
- 正则化方法:L1和L2 regularization、数据集扩增、dropout(转)
ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666------ ...
- Unity灯光烘焙
Unity3D烘焙技术 一.Light灯光场景烘焙1.理论理解:(1)烘焙背景:在一个场景中,由于灯光组件起到实时渲染的效果,并直接与计算机硬件GPU渲染器进行交互作用,因此对计算机显卡性能不良,以至 ...
- 02-线性结构3 Reversing Linked List
题目 Sample Input: 00100 6 4 00000 4 99999 00100 1 12309 68237 6 -1 33218 3 00000 99999 5 68237 12309 ...
- layer,Jquery,validate实现表单验证,刷新页面,关闭子页面
1.表单验证 //获取父层 var index = parent.layer.getFrameIndex(window.name); //刷新父层 parent.location.reload(); ...
- 【微服务】之四:轻松搞定SpringCloud微服务-负载均衡Ribbon
对于任何一个高可用高负载的系统来说,负载均衡是一个必不可少的名称.在大型分布式计算体系中,某个服务在单例的情况下,很难应对各种突发情况.因此,负载均衡是为了让系统在性能出现瓶颈或者其中一些出现状态下可 ...
- Mac中配置nvm
1.安装 nvm curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.2/install.sh | bash 安装成功默认将 ...
- ACM HDU Bone Collector 01背包
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 这是做的第一道01背包的题目.题目的大意是有n个物品,体积为v的背包.不断的放入物品,当然物品有 ...
- node.js爬虫
这是一个简单的node.js爬虫项目,麻雀虽小五脏俱全. 本项目主要包含一下技术: 发送http抓取页面(http).分析页面(cheerio).中文乱码处理(bufferhelper).异步并发流程 ...
- WinForm程序,实现只启动一个实例
前言:在我们做的软件中,当点击图标运行时,正常的需求是只需要启动一个软件的实例,这是非常重要的一点,不然就显得我们的软件非常的山寨,笔者在工作中经常遇到同事没有注意这一点,看是不重要,实则非常的重要, ...