VGGNet,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司一起研发,深度卷积神经网络。VGGNet反复堆叠3x3小型卷积核和2x2最大池化层,成功构筑16~19层深卷积神经网络。比state-of-the-art网络结构,错误率幅下降,取得ILSVRC 2014比赛分类第2名和定位第1名。拓展性强,迁移其他图片数据泛化性好。结构简洁,整个网络都用同样大小卷积核尺寸和最大池化尺寸。VGGNet训练后模型参数官方开源,domain specific图像分类任务再训练,提供较好初始化权重。

                       ConvNet Configuration
A A-LRN B C D E
weight layers 11 11 13 16 16 19
input(224x224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128
maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv1-256 conv3-256 conv3-256 conv3-256
maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv1-512 conv3-512 conv3-512 conv3-512
maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv1-512 conv3-512 conv3-512 conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max Network A,A-LRN B C D E
Number of parameters 133 133 134 138 144

卷积层参数量少,最后3个全连接层参数多。训练耗时在卷积,计算量较大。D为VGGNet-16,E为VGGNet-19。C比B多3个1x1卷积层,线性变换,输入、输出通道数不变,没降维。

VGGNet 5段卷积,每段2~3卷积层,每段后接最大池化层给缩小图片尺寸。每段卷积核数量一样,越后段卷积核数量越多,64-128-256-512-512。多个3x3卷积层堆叠。2个3x3卷积层串联相当1个5x5。3个3x3卷积层串联相当1个7x7。 参数更少,非线性变换更多,增强特征学习能力。

先训练级别A简单网络,再复用A网络权重初如化复杂模型,训练收敛速度更快。预测,Multi-Scale,图像scale尺寸Q,图片输入卷积网络计算。最后卷积层,滑窗分类预测,不同窗口分类结果平均,不同尺寸Q结果平均得最后结果,提高图片数据利用率,提升预测准确率。训练过程,用Multi-Scale数据增强,原始图像缩放不同尺寸S,随机裁切224x224图片,增加数据量,防止过拟合。

LRN层作用不大,越深网络效果越好,1x1卷积很有效,但大卷积核可以学习更大空间特征。

载入系统库、TensorFlow。

conv_op函数,创建卷积层,参数存入参数列表。输入,input_op tensor,name 层名,kh kernel height 卷积核高,kw kernel width 卷积核宽,n_out 卷积核数量 输出通道数,dh 步长高,dw 步长宽,p参数列表。get_shape()[-1].value获取输入input_op通道数。tf.name_scope(name)设置scope。tf.get_variable创建kernel(卷积核),shape [kh,kw,n_in,n_out],卷积核高宽、输入输出通道数。tf.contrib.layers.xavier_initializer_conv2d()参数初始化。

tf.nn.conv2d卷积处理input_op。卷积核kernel,步长dhxdw,paddings模式SAME。tf.constant 赋值biases 0,tf.Variable转可训练参数。tf.nn.bias_add 相加卷积结果conv和bias,tf.nn.relu非线性处理得activation。创建卷积层,参数kernel、biases添加到参数列表p,卷积层输出activation返回。

全连接层创建函数 fc_op。先获取输入input_op通道数。tf.get_variable创建全连接层参数,第一维度输入通道数n_in,第二维度输出通道数n_out。xavier_initializer参数初始化。biases初始化0.1,避免dead neuron。tf.nn.relu_layer矩阵相乘input_op、kernel,加biases,ReLU非线性,交换得activation。全连接层参数kernel、biases添加参数列表p, activation返回。

定义最大池化层创建函数mpool_op。tf.nn.max_pool,输入input_op,池化尺寸khxkw,步长dhxdw,padding模式SAME。

VGGNet-16网络结构,6个部分,前5段卷积网络,最后一段全连接网络。定义创建VGGNet网络结构函数inference_op。输入input_op、keep_prob(控制dropout比率,placeholder)。先初始化参数列表p。

创建第一段卷积网络,两个卷积层(conv_op),一个最大池化层(mpool_op)。卷积核大小3x3,卷积核数量(输出通道数) 64,步长1x1,全像素扫描。第一卷积层输入input_op尺寸224x224x3,输出尺寸224x224x64。第二卷积层输入输出尺寸224x224x64。最大池化层2x2,输出112x112x64。

第二段卷积网络,2个卷积层,1个最大池化层。卷积输出通道数128。输出尺寸56x56x128。

第三段卷积网络,3个卷积层,1个最大池化层。卷积输出通道数256。输出尺寸28x28x256。

第四段卷积网络,3个卷积层,1个最大池化层。卷积输出通道数512。输出尺寸14x14x512。

第五段卷积网络,3个卷积层,1个最大池化层。卷积输出通道数512。输出尺寸7x7x512。输出结果每个样本,tf.reshape 扁平化为长度7x7x512=25088一维向量。

连接4096隐含点全连接层,激活函数ReLU。连接Dropout层,训练节点保留率0.5,预测1.0。

全连接层,Dropout层。

最后连接1000隐含点全连接层,Softmax 分类输出概率。tf.argmax 输出概率最大类别。返回fc8、softmax、predictions、参数列表p。

VGGNet-16网络结构构建完成。

评测函数time_tensorflow_run。session.run()方法,引入feed_dict,方便传入keep_prob控制Dropout层保留比率。

评测主函数run_benchmark。评测forward(inference)、backward(trainning)运算性能。生成尺寸224x224随机图片,tf.random_nornal函数生成标准差0.1正态分布随机数。

创建keep_prob placeholder,调用inference_op函数构建VGGNet-16网络结构,获得predictions、softmax、fc8、参数列表p。

创建Session,初始化全局参数。设keep_prob 1.0 预测。time_tensorflow_run评测forward运算时间。

计算VGGNet-16最后全连接层输出fc8 l2 loss。tf.gradients求loss所有模型参数梯度。time_tensorflow_run评测backward运算时间。target为求解梯度操作grad,keep_prob 0.5。设batch_size 32。

执行评测主函数run_benchmark(),测试VGGNet-16 TensorFlow forward、backward耗时。forward平均每个batch耗时0.152s。backward求解梯度,平均每个batch耗时0.617s。

VGGNet,7.3%错误率。更深网络,更小卷积核,隐式正则化。

    from datetime import datetime
import math
import time
import tensorflow as tf
def conv_op(input_op, name, kh, kw, n_out, dh, dw, p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",
shape=[kh, kw, n_in, n_out],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d())
conv = tf.nn.conv2d(input_op, kernel, (1, dh, dw, 1), padding='SAME')
bias_init_val = tf.constant(0.0, shape=[n_out], dtype=tf.float32)
biases = tf.Variable(bias_init_val, trainable=True, name='b')
z = tf.nn.bias_add(conv, biases)
activation = tf.nn.relu(z, name=scope)
p += [kernel, biases]
return activation
def fc_op(input_op, name, n_out, p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",
shape=[n_in, n_out],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
biases = tf.Variable(tf.constant(0.1, shape=[n_out], dtype=tf.float32), name='b')
activation = tf.nn.relu_layer(input_op, kernel, biases, name=scope)
p += [kernel, biases]
return activation
def mpool_op(input_op, name, kh, kw, dh, dw):
return tf.nn.max_pool(input_op,
ksize=[1, kh, kw, 1],
strides=[1, dh, dw, 1],
padding='SAME',
name=name)
def inference_op(input_op, keep_prob):
p = []
# assume input_op shape is 224x224x3
# block 1 -- outputs 112x112x64
conv1_1 = conv_op(input_op, name="conv1_1", kh=3, kw=3, n_out=64, dh=1, dw=1, p=p)
conv1_2 = conv_op(conv1_1, name="conv1_2", kh=3, kw=3, n_out=64, dh=1, dw=1, p=p)
pool1 = mpool_op(conv1_2, name="pool1", kh=2, kw=2, dw=2, dh=2)
# block 2 -- outputs 56x56x128
conv2_1 = conv_op(pool1, name="conv2_1", kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
conv2_2 = conv_op(conv2_1, name="conv2_2", kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
pool2 = mpool_op(conv2_2, name="pool2", kh=2, kw=2, dh=2, dw=2)
# # block 3 -- outputs 28x28x256
conv3_1 = conv_op(pool2, name="conv3_1", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
conv3_2 = conv_op(conv3_1, name="conv3_2", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
conv3_3 = conv_op(conv3_2, name="conv3_3", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
pool3 = mpool_op(conv3_3, name="pool3", kh=2, kw=2, dh=2, dw=2)
# block 4 -- outputs 14x14x512
conv4_1 = conv_op(pool3, name="conv4_1", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv4_2 = conv_op(conv4_1, name="conv4_2", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv4_3 = conv_op(conv4_2, name="conv4_3", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
pool4 = mpool_op(conv4_3, name="pool4", kh=2, kw=2, dh=2, dw=2)
# block 5 -- outputs 7x7x512
conv5_1 = conv_op(pool4, name="conv5_1", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv5_2 = conv_op(conv5_1, name="conv5_2", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv5_3 = conv_op(conv5_2, name="conv5_3", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
pool5 = mpool_op(conv5_3, name="pool5", kh=2, kw=2, dw=2, dh=2)
# flatten
shp = pool5.get_shape()
flattened_shape = shp[1].value * shp[2].value * shp[3].value
resh1 = tf.reshape(pool5, [-1, flattened_shape], name="resh1")
# fully connected
fc6 = fc_op(resh1, name="fc6", n_out=4096, p=p)
fc6_drop = tf.nn.dropout(fc6, keep_prob, name="fc6_drop")
fc7 = fc_op(fc6_drop, name="fc7", n_out=4096, p=p)
fc7_drop = tf.nn.dropout(fc7, keep_prob, name="fc7_drop")
fc8 = fc_op(fc7_drop, name="fc8", n_out=1000, p=p)
softmax = tf.nn.softmax(fc8)
predictions = tf.argmax(softmax, 1)
return predictions, softmax, fc8, p def time_tensorflow_run(session, target, feed, info_string):
num_steps_burn_in = 10
total_duration = 0.0
total_duration_squared = 0.0
for i in range(num_batches + num_steps_burn_in):
start_time = time.time()
_ = session.run(target, feed_dict=feed)
duration = time.time() - start_time
if i >= num_steps_burn_in:
if not i % 10:
print ('%s: step %d, duration = %.3f' %
(datetime.now(), i - num_steps_burn_in, duration))
total_duration += duration
total_duration_squared += duration * duration
mn = total_duration / num_batches
vr = total_duration_squared / num_batches - mn * mn
sd = math.sqrt(vr)
print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
(datetime.now(), info_string, num_batches, mn, sd))
def run_benchmark():
with tf.Graph().as_default():
image_size = 224
images = tf.Variable(tf.random_normal([batch_size,
image_size,
image_size, 3],
dtype=tf.float32,
stddev=1e-1))
keep_prob = tf.placeholder(tf.float32)
predictions, softmax, fc8, p = inference_op(images, keep_prob)
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
sess = tf.Session(config=config)
sess.run(init)
time_tensorflow_run(sess, predictions, {keep_prob:1.0}, "Forward")
objective = tf.nn.l2_loss(fc8)
grad = tf.gradients(objective, p)
time_tensorflow_run(sess, grad, {keep_prob:0.5}, "Forward-backward")
batch_size=32
num_batches=100
run_benchmark()

参考资料:
《TensorFlow实战》

欢迎付费咨询(150元每小时),我的微信:qingxingfengzi

学习笔记TF031:实现VGGNet的更多相关文章

  1. tensorflow学习笔记——VGGNet

    2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC201 ...

  2. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

  3. PHP-自定义模板-学习笔记

    1.  开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2.  整体架构图 ...

  4. PHP-会员登录与注册例子解析-学习笔记

    1.开始 最近开始学习李炎恢老师的<PHP第二季度视频>中的“章节5:使用OOP注册会员”,做一个学习笔记,通过绘制基本页面流程和UML类图,来对加深理解. 2.基本页面流程 3.通过UM ...

  5. 2014年暑假c#学习笔记目录

    2014年暑假c#学习笔记 一.C#编程基础 1. c#编程基础之枚举 2. c#编程基础之函数可变参数 3. c#编程基础之字符串基础 4. c#编程基础之字符串函数 5.c#编程基础之ref.ou ...

  6. JAVA GUI编程学习笔记目录

    2014年暑假JAVA GUI编程学习笔记目录 1.JAVA之GUI编程概述 2.JAVA之GUI编程布局 3.JAVA之GUI编程Frame窗口 4.JAVA之GUI编程事件监听机制 5.JAVA之 ...

  7. seaJs学习笔记2 – seaJs组建库的使用

    原文地址:seaJs学习笔记2 – seaJs组建库的使用 我觉得学习新东西并不是会使用它就够了的,会使用仅仅代表你看懂了,理解了,二不代表你深入了,彻悟了它的精髓. 所以不断的学习将是源源不断. 最 ...

  8. CSS学习笔记

    CSS学习笔记 2016年12月15日整理 CSS基础 Chapter1 在console输入escape("宋体") ENTER 就会出现unicode编码 显示"%u ...

  9. HTML学习笔记

    HTML学习笔记 2016年12月15日整理 Chapter1 URL(scheme://host.domain:port/path/filename) scheme: 定义因特网服务的类型,常见的为 ...

随机推荐

  1. Backbox Linux简介与配置内网IP

    总体说起来,Backbox内置的工具什么的,并不是很多,但是它集成了一些用起来很棒的工具. 比如:Beef.Sqlmap.wpscan.zenmap.msf.w3af.dns嗅探等一系列工具,传说中的 ...

  2. 排序算法 - 选择排序(selection sort)

    选择排序(Selection sort)跟插入排序一样,也是O(n^2)的复杂度,这个排序方式也可以用我们的扑克牌来解释. 概念 桌面上有一堆牌,也是杂乱无章的,现在我们想将牌由小到大排序,如果使用选 ...

  3. java之真假分页

    真分页(要的是什么范围的记录在数据库查的时候就只查这几条记录):select s.* from (select *,row_number() over(order by SLoginId) as ro ...

  4. <iOS 组件与框架> -- UIKit Dynamics

    UIKit Dynamics 结合 『iOS 组件与框架 』一书.总结的知识点与demo demo 地址: GitHub地址 一.概述 1.UIKit Dynamics 是 iOS 7 新增的内容.其 ...

  5. JDK和Tomcat的简单配置(菜鸟巧记一)

    JDK和Tomcat的配置 1.先好安装JDK 1.1先到oracle官网下载合适自己的JDK 地址http://www.oracle.com/technetwork/java/javase/down ...

  6. [转] .NET领域驱动设计—看DDD是如何运用设计模式颠覆传统架构

    阅读目录: 1.开篇介绍 2.简单了解缘由(本文的前期事宜) 3.DomainModel扩展性(运用设计模式设计模型变化点) 3.1.模型扩展性 3.2.设计模式的使用(苦心专研的设计模式.设计思想可 ...

  7. Python之数据加密与解密及相关操作(hashlib模块、hmac模块、random模块、base64模块、pycrypto模块)

    本文内容 数据加密概述 Python中实现数据加密的模块简介 hashlib与hmac模块介绍 random与secrets模块介绍 base64模块介绍 pycrypto模块介绍 总结 参考文档 提 ...

  8. vue项目构建与实战

    关于 微信公众号:前端呼啦圈(Love-FED) 我的博客:劳卜的博客 知乎专栏:前端呼啦圈 前言 由于vue相对来说比较平缓的学习过程和新颖的技术思路,使其受到了广大前后端开发者的青睐,同时其通俗易 ...

  9. Linux下SVN+多个Tomcat自动部署

    项目中都是jsp开发,所以用到Tomcat. 在我文章中也写过多个Tomcat 的部署,具体可以参考:http://www.cnblogs.com/magmell/p/7045193.html SVN ...

  10. react-router 踩坑记

    react-router踩坑分享 背景 辛苦历程 JavaScript动态修改 第一次尝试 第二次尝试 第三次尝试 第四次尝试 总结步骤 其他方案 原理 History 常见的3种History Br ...