[笔记]SciPy、Matplotlib基础操作
NumPy、SciPy、Matplotlib,Python下机器学习三大利器。上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib。目前接触到的东西不多,以后再遇到些比较常用的再更新。
scipy是基于numpy的扩充,所以安装时要先安装numpy再安装scipy。scipy的命名空间包含numpy,所以只需import scipy即可,numpy不用import。(所以以下有些东西可能是numpy里的我没分清楚,反正一并写了吧。)
import scipy as sp
import matplotlib.pyplot as plt
首先从文件导入数据,使用genfromtxt函数。文件是《Python语言构建机器学习系统(第二版)》里提供的数据:web_traffic.tsv。读取后把x与y分开。而且里面有几个nan数据,得事先踢掉:
data = sp.genfromtxt("web_traffic.tsv",delimiter="\t")
x = data[:,0]
y = data[:,1]
x = x[~sp.isnan(y)]
y = y[~sp.isnan(y)]
然后我们想可视化这些数据,以图表给出,那就用到matplotlib了:
plt.scatter(x, y, s=6) # 在图标上产生散点,s代表绘制的点的粗细
plt.title("Web traffic") # 标题
plt.xlabel("Time") # x轴标签
plt.ylabel("Hits/hour") # y轴标签
plt.xticks([w*7*24 for w in range(10)],
["week %i" % w for w in range(10)]) # 更改x轴的默认刻度显示,以一星期为一个刻度,range中数字10表示x刻度最多显示到第10周
plt.autoscale(tight=True)
plt.grid(True,linestyle='-',color='0.75')
最后plt.show()
以显示窗口。
然后我们用二次函数作为模型,并使得函数最好的适应数据。
fp,residuals,rank,sv,rcond = sp.polyfit(x,y,2,full=True)
polyfit函数直接帮我们找到了这个使得方差最小的直线的参数,参数存在f1p里面。里面那个参数2就代表产生二次函数,3代笔3次函数,50就是50次函数。我们print fp,得到:
[ 1.05322215e-02 -5.26545650e+00 1.97476082e+03]
full=True使得这个函数返回更多的东西,返回一些额外的后台信息,比如误差(error),就存在那个residuals里:
[ 1.79983508e+08]
poly1d将参数转换成可识别的函数格式,可以把它当做普通python的函数用。注意是poly“1”d,是1不是l。不知道有没有poly2d。
f = sp.poly1d(fp)
linspace函数产生一次函数从x=0到x=x[-1]区间内的函数的值,作为一维矩阵存储。1000那个数字代表产生几个值,数字越大产生的值越多。当然对于一次函数,值为2其实就够了。
fx = sp.linspace(0,x[-1],1000)
值为1000时:
值为5时:
就只计算了5个值,明显弧度不行了。
然后以下plot函数就是把得到的二次函数放到figure上的。legend产生左上角那个d=2标示。
plt.plot(fx,f(fx),linewidth=2)
plt.legend(["d=%i" % f.order],loc="upper left")
同理可得其他次数的最佳适应的函数。以下写了个小小的成品,计算了一次、二次、五十三次函数:
import scipy as sp
import matplotlib.pyplot as plt
data = sp.genfromtxt("web_traffic.tsv",delimiter="\t")
x = data[:,0]
y = data[:,1]
x = x[~sp.isnan(y)]
y = y[~sp.isnan(y)]
plt.scatter(x, y, s=6)
plt.title("Web traffic")
plt.xlabel("Time")
plt.ylabel("Hits/hour")
plt.xticks([w*7*24 for w in range(10)],
["week %i" % w for w in range(10)])
plt.autoscale(tight=True)
plt.grid(True,linestyle='-',color='0.75')
f1p,residuals,rank,sv,rcond = sp.polyfit(x,y,1,full=True)
f1 = sp.poly1d(f1p)
f1x = sp.linspace(0,x[-1],1000)
plt.plot(f1x,f1(f1x),linewidth=2)
plt.legend(["d=%i" % f1.order],loc="upper left")
f2p = sp.polyfit(x,y,2)
f2 = sp.poly1d(f2p)
f2x = sp.linspace(0,x[-1],1000)
plt.plot(f2x,f2(f2x),linewidth=2)
plt.legend(["d=%i" % f2.order],loc="upper left")
f3p = sp.polyfit(x,y,53)
f3 = sp.poly1d(f3p)
f3x = sp.linspace(0,x[-1],1000)
plt.plot(f3x,f3(f3x),linewidth=2)
plt.legend(["d=%i" % f3.order],loc="upper left")
plt.show()
[笔记]SciPy、Matplotlib基础操作的更多相关文章
- (2.2)学习笔记之mysql基础操作(登录及账户权限设置)
本系列学习笔记主要讲如下几个方面: 本文笔记[三:mysql登录][四:账户权限设置][五:mysql数据库安全配置] 三.mysql登录 常用登录方式如下: 四.账户权限设置 (4.1)查看用户表, ...
- (2.3)学习笔记之mysql基础操作(表/库操作)
本系列学习笔记主要讲如下几个方面: 本文笔记[六:表操作--线上可以直接删除表吗?] 附加:库操作 [1]创建制定字符集的数据库 需求描述: 在创建DB的时候指定字符集. 操作过程: 1.使用crea ...
- Git 学习笔记--1.Git基础操作
取得项目的Git仓库 有两种方式取得Git项目仓库.第一种是在现存的目录下,通过导入所有文件来创建新的Git仓库.第二种是从已有的Git仓库克隆出一个新的镜像仓库. 在工作目录中初始化新仓库 要对现 ...
- 11-numpy笔记-莫烦基础操作1
代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...
- Java基础复习笔记系列 七 IO操作
Java基础复习笔记系列之 IO操作 我们说的出入,都是站在程序的角度来说的.FileInputStream是读入数据.?????? 1.流是什么东西? 这章的理解的关键是:形象思维.一个管道插入了一 ...
- 笔记-flask基础操作
笔记-flask基础操作 1. 前言 本文为flask基础学习及操作笔记,主要内容为flask基础操作及相关代码. 2. 开发环境配置 2.1. 编译环境准备 安装相关Lib ...
- 笔记-mysql-管理及基础操作
笔记-mysql使用-管理及基础操作 1. 简介 mysql是一个免费的关系型数据库,不过好像被oracle收购了.... 希望它继续免费. 1.1. 相关术语 数据库,表,列,行,冗 ...
- 小白学 Python 数据分析(17):Matplotlib(二)基础操作
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- disruptor笔记之三:环形队列的基础操作(不用Disruptor类)
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
随机推荐
- Linux集群
集群的起源: 集群并不是一个全新的概念,其实早在七十年代计算机厂商和研究机构就开始了对集群系统的研究和开发.由于主要用于科学工程计算,所以这些系统并不为大家所熟知.直到Linux集群的出现,集群的概念 ...
- 老李推荐:第14章1节《MonkeyRunner源码剖析》 HierarchyViewer实现原理-面向控件编程VS面向坐标编程
老李推荐:第14章1节<MonkeyRunner源码剖析> HierarchyViewer实现原理-面向控件编程VS面向坐标编程 poptest是国内唯一一家培养测试开发工程师的培训机 ...
- 20155304 实验一《Java开发环境的熟悉》实验报告
20155304 实验一实验报告 实验一 Java开发环境的熟悉 实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用IDEA编译.编译.运行.调试Java程序. 实验步骤 (一)命令行下 ...
- Html 经典布局(二)
经典布局案例(二): <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...
- Java Script 字符串操作
JS中常用几种字符串操作: big() small() bold() fontcolor() fontsize() italics() strike() link() charAt() charCod ...
- Sql server DATEADD日期函数的使用
DATEADD日期函数 DATEADD() 函数在日期中添加或减去指定的时间间隔. 日:在当前日期上加两天 , ,'2014-12-30') 月:在当前日期上加两个月 , , 年:在当前日期上加两年 ...
- mybatis新手入门常见问题集(持续更新)
一.参数为集合 Q:parameterType指的的类型是集合类型还是对象? A:都可以,甚至不用在xml中指定也可以.第一,mybatis会对传入的参数进行判断是不是list或者array,第二,m ...
- Libevent浅析
前段时间对Libevent的源码进行了阅读,现整理如下: 介绍 libevent是一个轻量级的开源高性能事件驱动网络库,是一个典型的Reactor模型.其主要特点有事件驱动,高性能,跨平台,统一事件源 ...
- 【算法】RMQ LCA 讲课杂记
4月4日,应学弟要求去了次学校给小同学们讲了一堂课,其实讲的挺内容挺杂的,但是目的是引出LCA算法. 现在整理一下当天讲课的主要内容: 开始并没有直接引出LCA问题,而是讲了RMQ(Range Min ...
- 【外文翻译】 为什么我要写 getters 和setters
原文作者: Shamik Mitra 原文链接:https://dzone.com/articles/why-should-i-write-getters-and-setters 当我开始我的java ...