bzoj4514 [Sdoi2016]数字配对
Description
Input
Output
一行一个数,最多进行多少次配对
Sample Input
2 4 8
2 200 7
-1 -2 1
Sample Output
HINT
n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5
正解:费用流。
这题的费用流模型还是比较显然的,不过有两个要注意的地方。
首先这题需要建成二分图的模型,所以每个点的流量肯定会乘$2$,如果直接连可能会导致有些点多用了流量。对于这种情况,我们在每个$i->j$的连边时,把$j->i$也连边,最后把流量除以$2$,就能解决这个问题了。
还有一个问题,题目是问的费用$>=0$的最大流,首先我们肯定要把费用取反,转成最小费用最大流。然后我们可以在每次增广时加一个特判,如果之前增广的费用+当前费用$>0$,那么我们直接取使得费用$<=0$的最大流量就行了。因为费用流每次都是找最短路增广,所以这样做是对的。
//It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf (1LL<<60)
#define N (3010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ ll nt,to,flow,cap,dis; }g[]; ll head[N],dis[N],vis[N],f[N],p[N],fa[N],a[N],b[N],c[N];
ll q[],n,S,T,flow,cost,num=; il ll gi(){
RG ll x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void insert(RG ll from,RG ll to,RG ll cap,RG ll cost){
g[++num]=(edge){head[from],to,,cap,cost},head[from]=num; return;
} il ll bfs(RG ll S,RG ll T){
for (RG ll i=;i<=T;++i) dis[i]=inf;
RG ll h=,t=; q[t]=S,dis[S]=,vis[S]=,f[S]=inf;
while (h<t){
RG ll x=q[++h],v;
for (RG ll i=head[x];i;i=g[i].nt){
v=g[i].to;
if (dis[v]>dis[x]+g[i].dis && g[i].cap>g[i].flow){
dis[v]=dis[x]+g[i].dis,fa[v]=x,p[v]=i;
f[v]=min(f[x],g[i].cap-g[i].flow);
if (!vis[v]) vis[v]=,q[++t]=v;
}
}
vis[x]=;
}
if (dis[T]==inf) return ;
if (cost+dis[T]*f[T]>){ //费用>0特判
RG ll x=-cost/dis[T];
flow+=x; return ;
}
flow+=f[T],cost+=dis[T]*f[T];
for (RG ll i=T;i!=S;i=fa[i])
g[p[i]].flow+=f[T],g[p[i]^].flow-=f[T];
return ;
} il ll isprime(RG ll x){
if (x== || x==) return ;
if (!(x&)) return x==;
for (RG ll i=;i*i<=x;++i)
if (!(x%i)) return ;
return ;
} il void work(){
n=gi(),S=*n+,T=*n+;
for (RG ll i=;i<=n;++i) a[i]=gi();
for (RG ll i=;i<=n;++i) b[i]=gi();
for (RG ll i=;i<=n;++i) c[i]=gi();
for (RG ll i=;i<=n;++i){
insert(S,i,b[i],),insert(i,S,,);
insert(n+i,T,b[i],),insert(T,n+i,,);
}
for (RG ll i=;i<=n;++i)
for (RG ll j=;j<=n;++j){
if (a[i]%a[j]) continue;
if (isprime(a[i]/a[j])){
insert(i,n+j,inf,-c[i]*c[j]),insert(n+j,i,,c[i]*c[j]);
insert(j,n+i,inf,-c[i]*c[j]),insert(n+i,j,,c[i]*c[j]);
//防止多余流量影响结果
}
}
while (bfs(S,T)); printf("%lld\n",flow>>); return;
} int main(){
File("match");
work();
return ;
}
bzoj4514 [Sdoi2016]数字配对的更多相关文章
- BZOJ4514——[Sdoi2016]数字配对
有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...
- BZOJ4514[Sdoi2016]数字配对——最大费用最大流
题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...
- bzoj4514 [Sdoi2016]数字配对(网络流)
Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...
- [bzoj4514][SDOI2016]数字配对——二分图
题目描述 传送门 题解: 这个题真的是巨坑,经过了6个WA,2个TLE,1个RE后才终于搞出来,中间都有点放弃希望了... 主要是一定要注意longlong! 下面开始说明题解. 朴素的想法是: 如果 ...
- BZOJ4514 [Sdoi2016]数字配对 【费用流】
题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...
- bzoj4514: [Sdoi2016]数字配对--费用流
看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...
- bzoj4514: [Sdoi2016]数字配对(费用流)
传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...
- 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流
[bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...
- 【BZOJ4514】[Sdoi2016]数字配对 费用流
[BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...
随机推荐
- HTML超文本标记语言-基础标签整理
第一章 <META>标签: <meta http-equiv="Content-Type" Content="text/html;charset=gb2 ...
- gitoschina使用入门
1 下载git sudo apt-get install git 2 添加公钥:terminal: ssh-keygen -t rsa -C "git.oschina.net" ...
- ubuntu16.10下安装erlang和RabbitMQ
Ubuntu系统下安装RabbitMQ(我选择的是Ubuntu Server 16.10) 1.首先必须要有Erlang环境支持 --安装之前要装一些必要的库(Erlang开发环境同样)(参考:duq ...
- 当git上文件大小写重命名的修改时(git大小写敏感/默认不敏感),如何提交
git默认是大小写不敏感!!! 加了感叹号是什么意思呢,意思就是这本身就是一个坑,本人使用的IDE是idea(网上说Eclipse可以避开问题),这个IDE本身就集成了git,但是如果要在termin ...
- PuTsangTo-单撸游戏开发04 给角色添加基本动画
一. 跳跃与移动的优化与完善 先给上一次的内容做一次补救,也就是上一次中还留存的,由于键盘按键事件的第一次回调与后续回调之间会间隔个小半秒带来的跳跃落地后动作延迟的情况. 最终的键盘按下回调的处理代码 ...
- java开发中的链式思维 —— 设计一个链式过滤器
概述 最近在弄阿里云的sls日志服务,该服务提供了一个搜索接口,可根据各种运算.逻辑等表达式搜出想要的内容.具体语法可见https://help.aliyun.com/document_detail/ ...
- jQuery对象长度size
jQuery对象有两个方法获取其长度,一个是length属性,一个是调用size()方法,据说前者的效率比后者的高. 代码如下: var DQNRList=$("a[id^='DQNR']& ...
- as3中强制垃圾回收
private function doClearance():void { // trace("clear"); try{ new LocalConnection().connec ...
- Linux简介与厂商版本上
Linux简介与厂商版本 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 1. Linux简介 Linux可以有狭义和广义两种 ...
- POI 3.8读取2003与2007格式EXCEL(xls、xlsx)
废话少说直接上代码,记得是poi3.8版本啊.方法入口唯一,自动判断格式,使用接口引用,自动选择执行方法. 方法入口: public static ArrayList<String[]> ...