B. Wizards and Huge Prize
time limit per test:

2 seconds

memory limit per test:

256 megabytes

input:

standard input

output:standard output

One must train much to do well on wizardry contests. So, there are numerous wizardry schools and magic fees.

One of such magic schools consists of n tours. A winner of each tour gets a huge prize. The school is organised quite far away, so one will have to take all the prizes home in one go. And the bags that you've brought with you have space for no more than k huge prizes.

Besides the fact that you want to take all the prizes home, you also want to perform well. You will consider your performance good if you win at least l tours.

In fact, years of organizing contests proved to the organizers that transporting huge prizes is an issue for the participants. Alas, no one has ever invented a spell that would shrink the prizes... So, here's the solution: for some tours the winner gets a bag instead of a huge prize. Each bag is characterized by number ai — the number of huge prizes that will fit into it.

You already know the subject of all tours, so you can estimate the probability pi of winning the i-th tour. You cannot skip the tour under any circumstances.

Find the probability that you will perform well on the contest and will be able to take all won prizes home (that is, that you will be able to fit all the huge prizes that you won into the bags that you either won or brought from home).

Input

The first line contains three integers nlk (1 ≤ n ≤ 200, 0 ≤ l, k ≤ 200) — the number of tours, the minimum number of tours to win, and the number of prizes that you can fit in the bags brought from home, correspondingly.

The second line contains n space-separated integers, pi (0 ≤ pi ≤ 100) — the probability to win the i-th tour, in percents.

The third line contains n space-separated integers, ai (1 ≤ ai ≤ 200) — the capacity of the bag that will be awarded to you for winning the i-th tour, or else -1, if the prize for the i-th tour is a huge prize and not a bag.

Output

Print a single real number — the answer to the problem. The answer will be accepted if the absolute or relative error does not exceed10 - 6.

Examples
input
3 1 0
10 20 30
-1 -1 2
output
0.300000000000
input
1 1 1
100
123
output
1.000000000000
Note

In the first sample we need either win no tour or win the third one. If we win nothing we wouldn't perform well. So, we must to win the third tour. Other conditions will be satisfied in this case. Probability of wining the third tour is 0.3.

In the second sample we win the only tour with probability 1.0, and go back home with bag for it.

题解

这大概是我第一道不是图上的概率

刚开始的时候都没有什么思路......果然dp还是要多刷题

我们设f[i][j][k]为"前i天赢了j场,剩余空间为k"的概率

通过十分艰苦地读题,不难发现,k在超过200后就没有什么用了,所以k只需要枚举0~200

但我们还发现这些比赛是无序的,也就是说我们可以先去拿后面的包,再去拿前面的奖,所以我们必须把它变成无序的.

考虑把k都加上200(诡异的思路......),这样前面的奖品也可以先选上(+200后是正的),再去后面选包,这样就可以随意处理了

这样最后在200<=k<=400,l<=j<=n的范围内枚举所有f[n][j][k]即可(现在的200意味着原来的0,小于200意味着剩余空间为负值)

代码见下:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
double p[N],k[N];
int n,l,s,b[N];
double f[N][N][*N];
int main()
{
scanf("%d%d%d",&n,&l,&s);
for(int i=;i<=n;i++)
scanf("%lf",&p[i]),p[i]/=,k[i]=1.0-p[i];
for(int i=;i<=n;i++)
{scanf("%d",&b[i]);}
f[][][s+]=;
for(int i=;i<n;i++)
for(int j=;j<=i;j++)
for(int v=;v<=;v++)
{
int t=min(v+b[i+],);
f[i+][j][v]+=f[i][j][v]*k[i+];
if(t>=)
f[i+][j+][t]+=f[i][j][v]*p[i+];
}
double ans=0.0;
for(int v=;v<=;v++)
for(int j=l;j<=n;j++)
ans+=f[n][j][v];
printf("%.12lf",ans);
}

codeforces167B

[codeforces167B]Wizards and Huge Prize的更多相关文章

  1. Codeforces Round #114 (Div. 1) B. Wizards and Huge Prize 概率dp

    B. Wizards and Huge Prize Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  2. [Codeforces-div.1 167B] Wizards and Huge Prize

    [Codeforces-div.1 167B] Wizards and Huge Prize 试题分析 注意到每个物品互相独立,互不干扰之后就非常好做了. 算出一个物品最后的价值期望,然后乘以K即可. ...

  3. Codeforces 167B Wizards and Huge Prize(概率dp)

    题意: n个人,开始有一个容量为k得背包,击败一个人背包可以获得一定容量或得到一个财富(放入背包内),给出击败每个人的概率,求至少击败l个人,且背包容量大于获得的总财富值的概率 分析: 状态好确定,d ...

  4. CodeForces 167B - Wizards and Huge Prize 期望概率dp

    初步分析:把赢了的巡回赛的a值加起来就是最后的剩余空间 这个明显的是状态转移的dp啊,然而他的状态比较骚是个数组,表示剩余空间,f(i,j,b),i表示比到第几场,j表示赢了几场,b就是里面的核心状态 ...

  5. Codeforces Round #114 (Div. 2)

    Codeforces Round #114 (Div. 2) 代码 Codeforces Round #114 (Div. 2) C. Wizards and Trolleybuses 思路 每条车的 ...

  6. The 2018 Nobel prizesThe Nobel prize for economics is awarded for work on the climate and economic growth

    The 2018 Nobel prizesThe Nobel prize for economics is awarded for work on the climate and economic g ...

  7. Huge Page 是否是拯救性能的万能良药?

    本文将分析是否Huge Page在任何条件下(特别是NUMA架构下)都能带来性能提升. 本博客已经迁移至: http://cenalulu.github.io/ 为了更好的体验,请通过此链接阅读: h ...

  8. FZU 1608 Huge Mission(线段树)

    Problem 1608 Huge Mission Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description Oaiei ...

  9. Linux就这个范儿 第15章 七种武器 linux 同步IO: sync、fsync与fdatasync Linux中的内存大页面huge page/large page David Cutler Linux读写内存数据的三种方式

    Linux就这个范儿 第15章 七种武器  linux 同步IO: sync.fsync与fdatasync   Linux中的内存大页面huge page/large page  David Cut ...

随机推荐

  1. 解析View的getDrawingCache方法

    1. View 的getDrawingCache方法 有时候需要将某个view的内容以图片的方式保存下来,感觉就和截图差不多,可以使用View 的getDrawingCache方法,返回一个Bitma ...

  2. 树莓派安装ubuntu-server,配置镜像,安装python/mysql/samba记录

    目标: 1/在raspberrypi 3B上安装ubuntu-server 2/配置好python/mysql/samba等服务,实现爬虫稳定运行我的硬件准备: 1/raspberrypi 3B 2/ ...

  3. H5 canvas圆形的时钟

    今天用H5中的canvas标签做一个时钟,H5中有很多好用的新增标签,真的很不错. 1.canvas标签介绍 <canvas> 标签定义图形,比如图表和其他图像,你必须使用脚本来绘制图形. ...

  4. Java并发,看到了,就记录下呗

    在这篇博客中,主要把之前看的书的内容记录一下,个人感觉还是可以的,原题是这样的:开发一个高效的缓存.这里指的是单机. 首先我来看当前的一个版本 public interface Computable& ...

  5. jQuery操作css样式

    jQuery操作css样式 css操作的分类: css操作 位置操作 尺寸操作 css操作之css css代码: html代码: jQuery代码: 效果如下: css操作之位置操作 css代码: h ...

  6. vuex使用报错

    1.vuex简介 最近在玩vuex,不得不说它是一个很强大的工具,它的目的就是把数据统一管理起来,方便各个组件之间来回调用 2.vuex引用报错 当我们去官网看API文档的时候,会发现官网是这么应用a ...

  7. SqlSessionFactoryBuilder、SqlSessionFactory、SqlSession作用域(Scope)和生命周期

    可以说每个MyBatis都是以一个SqlSessionFactory实例为中心的.SqlSessionFactory实例可以通过SqlSessionFactoryBuilder来构建.一是可以通过XM ...

  8. 【2017-05-21】WebForm内置对象:Session、Cookie,登录和状态保持

    1.Request -获取请求对象 string s =Request["key"]; 2.Response  -  响应请求对象 Response.Redirect(" ...

  9. c# .net core 下的网络请求

    本文章是在VS2017的环境下,.net core 1.1版本以上. 在这期间,由于.net core 并不基于IIS,我们的过去的网络请求代码在.net core框架下,有可能会出现不兼容,报错的现 ...

  10. Ultimus BPM 制药与医疗行业应用解决方案

    Ultimus BPM 制药与医疗行业应用解决方案 行业应用需求 制药与医疗行业客户特点有企业总资产高.员工规模大,销售网络往往遍及全国,乃至全球市场:拥有复杂的制药生产或医疗服务组织机构,并均有严格 ...