B. Wizards and Huge Prize
time limit per test:

2 seconds

memory limit per test:

256 megabytes

input:

standard input

output:standard output

One must train much to do well on wizardry contests. So, there are numerous wizardry schools and magic fees.

One of such magic schools consists of n tours. A winner of each tour gets a huge prize. The school is organised quite far away, so one will have to take all the prizes home in one go. And the bags that you've brought with you have space for no more than k huge prizes.

Besides the fact that you want to take all the prizes home, you also want to perform well. You will consider your performance good if you win at least l tours.

In fact, years of organizing contests proved to the organizers that transporting huge prizes is an issue for the participants. Alas, no one has ever invented a spell that would shrink the prizes... So, here's the solution: for some tours the winner gets a bag instead of a huge prize. Each bag is characterized by number ai — the number of huge prizes that will fit into it.

You already know the subject of all tours, so you can estimate the probability pi of winning the i-th tour. You cannot skip the tour under any circumstances.

Find the probability that you will perform well on the contest and will be able to take all won prizes home (that is, that you will be able to fit all the huge prizes that you won into the bags that you either won or brought from home).

Input

The first line contains three integers nlk (1 ≤ n ≤ 200, 0 ≤ l, k ≤ 200) — the number of tours, the minimum number of tours to win, and the number of prizes that you can fit in the bags brought from home, correspondingly.

The second line contains n space-separated integers, pi (0 ≤ pi ≤ 100) — the probability to win the i-th tour, in percents.

The third line contains n space-separated integers, ai (1 ≤ ai ≤ 200) — the capacity of the bag that will be awarded to you for winning the i-th tour, or else -1, if the prize for the i-th tour is a huge prize and not a bag.

Output

Print a single real number — the answer to the problem. The answer will be accepted if the absolute or relative error does not exceed10 - 6.

Examples
input
3 1 0
10 20 30
-1 -1 2
output
0.300000000000
input
1 1 1
100
123
output
1.000000000000
Note

In the first sample we need either win no tour or win the third one. If we win nothing we wouldn't perform well. So, we must to win the third tour. Other conditions will be satisfied in this case. Probability of wining the third tour is 0.3.

In the second sample we win the only tour with probability 1.0, and go back home with bag for it.

题解

这大概是我第一道不是图上的概率

刚开始的时候都没有什么思路......果然dp还是要多刷题

我们设f[i][j][k]为"前i天赢了j场,剩余空间为k"的概率

通过十分艰苦地读题,不难发现,k在超过200后就没有什么用了,所以k只需要枚举0~200

但我们还发现这些比赛是无序的,也就是说我们可以先去拿后面的包,再去拿前面的奖,所以我们必须把它变成无序的.

考虑把k都加上200(诡异的思路......),这样前面的奖品也可以先选上(+200后是正的),再去后面选包,这样就可以随意处理了

这样最后在200<=k<=400,l<=j<=n的范围内枚举所有f[n][j][k]即可(现在的200意味着原来的0,小于200意味着剩余空间为负值)

代码见下:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
double p[N],k[N];
int n,l,s,b[N];
double f[N][N][*N];
int main()
{
scanf("%d%d%d",&n,&l,&s);
for(int i=;i<=n;i++)
scanf("%lf",&p[i]),p[i]/=,k[i]=1.0-p[i];
for(int i=;i<=n;i++)
{scanf("%d",&b[i]);}
f[][][s+]=;
for(int i=;i<n;i++)
for(int j=;j<=i;j++)
for(int v=;v<=;v++)
{
int t=min(v+b[i+],);
f[i+][j][v]+=f[i][j][v]*k[i+];
if(t>=)
f[i+][j+][t]+=f[i][j][v]*p[i+];
}
double ans=0.0;
for(int v=;v<=;v++)
for(int j=l;j<=n;j++)
ans+=f[n][j][v];
printf("%.12lf",ans);
}

codeforces167B

[codeforces167B]Wizards and Huge Prize的更多相关文章

  1. Codeforces Round #114 (Div. 1) B. Wizards and Huge Prize 概率dp

    B. Wizards and Huge Prize Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  2. [Codeforces-div.1 167B] Wizards and Huge Prize

    [Codeforces-div.1 167B] Wizards and Huge Prize 试题分析 注意到每个物品互相独立,互不干扰之后就非常好做了. 算出一个物品最后的价值期望,然后乘以K即可. ...

  3. Codeforces 167B Wizards and Huge Prize(概率dp)

    题意: n个人,开始有一个容量为k得背包,击败一个人背包可以获得一定容量或得到一个财富(放入背包内),给出击败每个人的概率,求至少击败l个人,且背包容量大于获得的总财富值的概率 分析: 状态好确定,d ...

  4. CodeForces 167B - Wizards and Huge Prize 期望概率dp

    初步分析:把赢了的巡回赛的a值加起来就是最后的剩余空间 这个明显的是状态转移的dp啊,然而他的状态比较骚是个数组,表示剩余空间,f(i,j,b),i表示比到第几场,j表示赢了几场,b就是里面的核心状态 ...

  5. Codeforces Round #114 (Div. 2)

    Codeforces Round #114 (Div. 2) 代码 Codeforces Round #114 (Div. 2) C. Wizards and Trolleybuses 思路 每条车的 ...

  6. The 2018 Nobel prizesThe Nobel prize for economics is awarded for work on the climate and economic growth

    The 2018 Nobel prizesThe Nobel prize for economics is awarded for work on the climate and economic g ...

  7. Huge Page 是否是拯救性能的万能良药?

    本文将分析是否Huge Page在任何条件下(特别是NUMA架构下)都能带来性能提升. 本博客已经迁移至: http://cenalulu.github.io/ 为了更好的体验,请通过此链接阅读: h ...

  8. FZU 1608 Huge Mission(线段树)

    Problem 1608 Huge Mission Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description Oaiei ...

  9. Linux就这个范儿 第15章 七种武器 linux 同步IO: sync、fsync与fdatasync Linux中的内存大页面huge page/large page David Cutler Linux读写内存数据的三种方式

    Linux就这个范儿 第15章 七种武器  linux 同步IO: sync.fsync与fdatasync   Linux中的内存大页面huge page/large page  David Cut ...

随机推荐

  1. Python 基础 四 面向对象杂谈

    Python 基础  四  面向对象杂谈 一.isinstance(obj,cls) 与issubcalss(sub,super) isinstance(obj,cls)检查是否obj是否是类 cls ...

  2. Python基本语法--语句

    # -*- coding: utf-8 -*- #条件语句 ''' if 判断条件: 执行语句…… else: 执行语句…… ''' flag = False name = 'python' if n ...

  3. Saltstack自动化运维

    Saltstack三大功能 1,远程执行 2,配置管理(状态) 3,云管理 四种运行方式: Local         本地 Minion/Master C/S Syndic  代理模式 Salt S ...

  4. java内存模型7-处理器内存模型

    处理器内存模型 顺序一致性内存模型是一个理论参考模型,JMM和处理器内存模型在设计时通常会把顺序一致性内存模型作为参照.JMM和处理器内存模型在设计时会对顺序一致性模型做一些放松,因为如果完全按照顺序 ...

  5. Spring Cloud 注册中心Eureka

    一.简介 最近在看Spring Cloud微服务,接下来的时间和大家一起分享我所看到的,公司现在用的是dubbo ,之后有时间也去了解了解dubbo的源码.与dubbo相比较,Spring Cloud ...

  6. 2.1 Java程序的构成

    2.1 Java程序的构成 2.1.1逻辑构成 Java源程序逻辑构成分为两大部分:程序头包的引用和类 的定义 1.程序头包的引用 主要是指引用JDK软件包自带的包,也可以是自己定义的类. 引用之后程 ...

  7. Hibernate composite key

    有两种方法来map composite key. 第一种用@IdClass第二种用@Embeddable,参考链接: http://stackoverflow.com/questions/358503 ...

  8. opencv探索之路(十二):感兴趣区域ROI和logo添加技术

    在图像处理领域,有一个非常重要的名词ROI. 什么是ROI? 它的英文全称是Region Of Interest,对应的中文解释就是感兴趣区域. 感兴趣区域,就是我们从图像中选择一个图像区域,这个区域 ...

  9. iOS开发常用第三方开源框架 持续更新中...

    键盘管理 TPKeyboardAvoiding IQKeyboardManager(1.2.8) 弹窗HUD MBProgressHUD(0.9.2) SVProgressHUD UIView+Toa ...

  10. MySQL 主从复制与读写分离概念及架构分析 (转)

    1.MySQL主从复制入门 首先,我们看一个图: 影响MySQL-A数据库的操作,在数据库执行后,都会写入本地的日志系统A中. 假设,实时的将变化了的日志系统中的数据库事件操作,在MYSQL-A的33 ...