Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

今天在省夏听了斜率优化dp
推式子&&结合数据结构搞了一晚上   QwQ
 //经过适当推式子可得当slope(j,k)>f[i] (j<k)时,k是优的
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll; const int maxn=; int l=,r=,n,L; //用类似(其实就是?)单调队列的数据结构维护最大值,使状态O(1)转移
long long s[maxn],f[maxn],dp[maxn],q[maxn]; double slope(int a,int b){
return (dp[a]-dp[b]+(f[a]+L)*(f[a]+L)-(f[b]+L)*(f[b]+L))/(2.0*(f[a]-f[b]));
} int main(){
scanf("%d%d",&n,&L); L++;
//预处理数据,简化公式
for(int i=;i<=n;i++) scanf("%d",&s[i]),s[i]+=s[i-],f[i]=s[i]+i;
for(int i=;i<=n;i++){
//不优,pop队首
while(l<r&&slope(q[l],q[l+])<=f[i]) l++;
dp[i]=dp[q[l]]+(f[i]-f[q[l]]-L)*(f[i]-f[q[l]]-L);
//不满足凸壳性质,pop队尾(维护下凸壳)
while(l<r&&slope(q[r-],q[r])>slope(q[r],i)) r--;
q[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}
 
盲目压行尽力压行一时爽(雾
 #include<cstdio>
const int maxn=;
int l=,r=,n,L;
long long s[maxn],f[maxn],dp[maxn],q[maxn];
double slope(int a,int b){ return (dp[a]-dp[b]+(f[a]+L)*(f[a]+L)-(f[b]+L)*(f[b]+L))/(2.0*(f[a]-f[b])); }
int main(){
scanf("%d%d",&n,&L); L++;
for(int i=;i<=n;i++) scanf("%d",&s[i]),s[i]+=s[i-],f[i]=s[i]+i;
for(int i=;i<=n;i++){
while(l<r&&slope(q[l],q[l+])<=f[i]) l++;
dp[i]=dp[q[l]]+(f[i]-f[q[l]]-L)*(f[i]-f[q[l]]-L);
while(l<r&&slope(q[r-],q[r])>slope(q[r],i)) r--;
q[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}

1010: [HNOI2008]玩具装箱toy [dp][斜率优化]的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

  3. 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12280  Solved: 5277[Submit][S ...

  4. [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性

    [HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...

  5. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...

  7. BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12451  Solved: 5407[Submit][Status][Discuss] Descript ...

  8. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  9. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

随机推荐

  1. PHP基础入门(三)---PHP函数基础

    PHP基础入门(三)---函数 今天来给大家分享一下PHP的函数基础.有了前两章的了解,想必大家对PHP有了一定的基础了解.想回顾前两章的朋友可以点击"PHP基础入门(一)"&qu ...

  2. 排序算法 - 插入排序(Insertion sort)

    插入排序对于少量元素的排序是很高效的,而且这个排序的手法在每个人生活中也是有的哦. 你可能没有意识到,当你打牌的时候,就是用的插入排序. 概念 从桌上的牌堆摸牌,牌堆内是杂乱无序的,但是我们摸上牌的时 ...

  3. js实现整数转化为小数

    toFixed 方法 返回一个字符串,代表一个以定点表示法表示的数字. number .toFixed(i) 参数 bumber 必选项.一个 Number 对象. i 可选项.小数点 后的数字位数. ...

  4. html5-表格的建立

    用表格显示信息调理清楚,使浏览者一目了然.表格在网页中还有协助布局的作用,可以把文字.图像等组织到表格的不同行列.那么,接下来我将讲解一下表格的常用属性. 首先,表格命令 表格的行:tr  每行中的列 ...

  5. java 中变量存储位置的区别

    1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.  2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字 ...

  6. 用php+mysql+ajax实现淘宝客服或阿里旺旺聊天功能 之 前台页面

    首先来看一下我已经实现的效果图: 消费者页面:(本篇随笔) (1)会显示店主的头像 (2)当前用户发送信息显示在右侧,接受的信息,显示在左侧 店主或客服页面:(下一篇随笔) (1)在左侧有一个列表 , ...

  7. 使用HttpClient 调用Web Api

    C#4.5 添加了异步调用Web Api . 如果你的项目是4.5以上版本,可以直接参考官方文档. http://www.asp.net/web-api/overview/web-api-client ...

  8. 假如时光倒流,我会这样学习Java

    回头看看, 我进入Java 领域已经快15个年头了, 虽然学的也一般, 但是分享下我的心得,估计也能帮大家少走点弯路. [入门] 我在2001年之前是C/C++阵营, 有C和面向对象的基础, 后来转到 ...

  9. php获取二维数组中某一列的值集合

    $result //二维数组$uid_list = array_column($result, 'uid');

  10. mysql 左连接 右连接 内链接

    一般所说的左连接,右连接是指左外连接,右外连接.做个简单的测试你看吧.先说左外连接和右外连接:[TEST1@orcl#16-12月-11] SQL>select * from t1;ID NAM ...