Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

今天在省夏听了斜率优化dp
推式子&&结合数据结构搞了一晚上   QwQ
 //经过适当推式子可得当slope(j,k)>f[i] (j<k)时,k是优的
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll; const int maxn=; int l=,r=,n,L; //用类似(其实就是?)单调队列的数据结构维护最大值,使状态O(1)转移
long long s[maxn],f[maxn],dp[maxn],q[maxn]; double slope(int a,int b){
return (dp[a]-dp[b]+(f[a]+L)*(f[a]+L)-(f[b]+L)*(f[b]+L))/(2.0*(f[a]-f[b]));
} int main(){
scanf("%d%d",&n,&L); L++;
//预处理数据,简化公式
for(int i=;i<=n;i++) scanf("%d",&s[i]),s[i]+=s[i-],f[i]=s[i]+i;
for(int i=;i<=n;i++){
//不优,pop队首
while(l<r&&slope(q[l],q[l+])<=f[i]) l++;
dp[i]=dp[q[l]]+(f[i]-f[q[l]]-L)*(f[i]-f[q[l]]-L);
//不满足凸壳性质,pop队尾(维护下凸壳)
while(l<r&&slope(q[r-],q[r])>slope(q[r],i)) r--;
q[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}
 
盲目压行尽力压行一时爽(雾
 #include<cstdio>
const int maxn=;
int l=,r=,n,L;
long long s[maxn],f[maxn],dp[maxn],q[maxn];
double slope(int a,int b){ return (dp[a]-dp[b]+(f[a]+L)*(f[a]+L)-(f[b]+L)*(f[b]+L))/(2.0*(f[a]-f[b])); }
int main(){
scanf("%d%d",&n,&L); L++;
for(int i=;i<=n;i++) scanf("%d",&s[i]),s[i]+=s[i-],f[i]=s[i]+i;
for(int i=;i<=n;i++){
while(l<r&&slope(q[l],q[l+])<=f[i]) l++;
dp[i]=dp[q[l]]+(f[i]-f[q[l]]-L)*(f[i]-f[q[l]]-L);
while(l<r&&slope(q[r-],q[r])>slope(q[r],i)) r--;
q[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}

1010: [HNOI2008]玩具装箱toy [dp][斜率优化]的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

  3. 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12280  Solved: 5277[Submit][S ...

  4. [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性

    [HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...

  5. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...

  7. BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12451  Solved: 5407[Submit][Status][Discuss] Descript ...

  8. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  9. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

随机推荐

  1. 用java来实现验证码功能(本帖为转载贴),作为个人学习收藏用

    一.关于为何使用验证的解释 在目前的网页的登录.注册中经常会见到各种验证码.其目的便是为了:防止暴力破解  .因为只要CPU性能较强,便可以在慢慢尝试密码的过程中来破解用户账号,因而导致的结果是用户信 ...

  2. Android界面(1) 使用TextView实现跑马灯效果

    方法一:(只能实现单个TextView的跑马灯效果)在TextView添加以下控件 android:singleLine="true"只能单行,超出的文字显示为"...& ...

  3. for循环 重点题

    1.冒泡排序  (特别重要): <script type="text/javascript"> var attr=Array(); for(var i=0; i< ...

  4. [1] Report Fusioncharts

    图形报表之fusioncharts  

  5. 常用JS图片滚动(无缝、平滑、上下左右滚动)代码大全

    innerHTML:    设置或获取位于对象起始和结束标签内的 HTML scrollHeight: 获取对象的滚动高度. scrollLeft:   设置或获取位于对象左边界和窗口中目前可见内容的 ...

  6. java中的注解总结

    1. 什么是注解 注解是java5引入的特性,在代码中插入一种注释化的信息,用于对代码进行说明,可以对包.类.接口.字段.方法参数.局部变量等进行注解.注解也叫元数据(meta data).这些注解信 ...

  7. CYQ.Data V5 分布式自动化缓存设计介绍(二)

    前言: 最近一段时间,开始了<IT连>创业,所以精力和写的文章多数是在分享创业的过程. 而关于本人三大框架CYQ.Data.Aries.Taurus.MVC的相关文章,基本都很少写了. 但 ...

  8. hibernate 返回对象指定属性,需要返回的列,可以直接返回 对象属性

    // hibernate 返回对象指定属性,需要返回的列,可以直接返回 对象属性 @Override public TeamPlan getTeamPlanByBaoMingId(String bao ...

  9. jQuery淡入淡出的轮播图

    html结构: <div class="banna">            <ul class="img">              ...

  10. Linux搭建SVN服务器(服务端)

    Linux搭建SVN服务器(服务端) 1 安装SVN SVN客户端:TortoiseSVN,官网下载:https://tortoisesvn.net/downloads.html(客户端) # yum ...