1010: [HNOI2008]玩具装箱toy [dp][斜率优化]
Description
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.
Input
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
Output
输出最小费用
Sample Input
3
4
2
1
4
Sample Output
//经过适当推式子可得当slope(j,k)>f[i] (j<k)时,k是优的
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll; const int maxn=; int l=,r=,n,L; //用类似(其实就是?)单调队列的数据结构维护最大值,使状态O(1)转移
long long s[maxn],f[maxn],dp[maxn],q[maxn]; double slope(int a,int b){
return (dp[a]-dp[b]+(f[a]+L)*(f[a]+L)-(f[b]+L)*(f[b]+L))/(2.0*(f[a]-f[b]));
} int main(){
scanf("%d%d",&n,&L); L++;
//预处理数据,简化公式
for(int i=;i<=n;i++) scanf("%d",&s[i]),s[i]+=s[i-],f[i]=s[i]+i;
for(int i=;i<=n;i++){
//不优,pop队首
while(l<r&&slope(q[l],q[l+])<=f[i]) l++;
dp[i]=dp[q[l]]+(f[i]-f[q[l]]-L)*(f[i]-f[q[l]]-L);
//不满足凸壳性质,pop队尾(维护下凸壳)
while(l<r&&slope(q[r-],q[r])>slope(q[r],i)) r--;
q[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}
#include<cstdio>
const int maxn=;
int l=,r=,n,L;
long long s[maxn],f[maxn],dp[maxn],q[maxn];
double slope(int a,int b){ return (dp[a]-dp[b]+(f[a]+L)*(f[a]+L)-(f[b]+L)*(f[b]+L))/(2.0*(f[a]-f[b])); }
int main(){
scanf("%d%d",&n,&L); L++;
for(int i=;i<=n;i++) scanf("%d",&s[i]),s[i]+=s[i-],f[i]=s[i]+i;
for(int i=;i<=n;i++){
while(l<r&&slope(q[l],q[l+])<=f[i]) l++;
dp[i]=dp[q[l]]+(f[i]-f[q[l]]-L)*(f[i]-f[q[l]]-L);
while(l<r&&slope(q[r-],q[r])>slope(q[r],i)) r--;
q[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}
1010: [HNOI2008]玩具装箱toy [dp][斜率优化]的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)
题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...
- 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 12280 Solved: 5277[Submit][S ...
- [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性
[HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...
- BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...
- BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...
- BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 12451 Solved: 5407[Submit][Status][Discuss] Descript ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
随机推荐
- 用java来实现验证码功能(本帖为转载贴),作为个人学习收藏用
一.关于为何使用验证的解释 在目前的网页的登录.注册中经常会见到各种验证码.其目的便是为了:防止暴力破解 .因为只要CPU性能较强,便可以在慢慢尝试密码的过程中来破解用户账号,因而导致的结果是用户信 ...
- Android界面(1) 使用TextView实现跑马灯效果
方法一:(只能实现单个TextView的跑马灯效果)在TextView添加以下控件 android:singleLine="true"只能单行,超出的文字显示为"...& ...
- for循环 重点题
1.冒泡排序 (特别重要): <script type="text/javascript"> var attr=Array(); for(var i=0; i< ...
- [1] Report Fusioncharts
图形报表之fusioncharts
- 常用JS图片滚动(无缝、平滑、上下左右滚动)代码大全
innerHTML: 设置或获取位于对象起始和结束标签内的 HTML scrollHeight: 获取对象的滚动高度. scrollLeft: 设置或获取位于对象左边界和窗口中目前可见内容的 ...
- java中的注解总结
1. 什么是注解 注解是java5引入的特性,在代码中插入一种注释化的信息,用于对代码进行说明,可以对包.类.接口.字段.方法参数.局部变量等进行注解.注解也叫元数据(meta data).这些注解信 ...
- CYQ.Data V5 分布式自动化缓存设计介绍(二)
前言: 最近一段时间,开始了<IT连>创业,所以精力和写的文章多数是在分享创业的过程. 而关于本人三大框架CYQ.Data.Aries.Taurus.MVC的相关文章,基本都很少写了. 但 ...
- hibernate 返回对象指定属性,需要返回的列,可以直接返回 对象属性
// hibernate 返回对象指定属性,需要返回的列,可以直接返回 对象属性 @Override public TeamPlan getTeamPlanByBaoMingId(String bao ...
- jQuery淡入淡出的轮播图
html结构: <div class="banna"> <ul class="img"> ...
- Linux搭建SVN服务器(服务端)
Linux搭建SVN服务器(服务端) 1 安装SVN SVN客户端:TortoiseSVN,官网下载:https://tortoisesvn.net/downloads.html(客户端) # yum ...