题目描述

作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如右图)。 现在,C君希望你告诉他队伍整齐时能看到的学生人数。

输入输出格式

输入格式:

共一个数N

输出格式:

共一个数,即C君应看到的学生人数。

输入输出样例

输入样例#1:

4
输出样例#1:

9

说明

【数据规模和约定】

对于 100% 的数据,1 ≤ N ≤ 40000

题解

首先,我们很容易发现,所有能看到的点都满足一点:

它的横纵坐标互质(C君在(0,0))

所以显然能看到的点的个数就是1~n-1的欧拉函数之和乘二加一

代码如下:

#include<iostream>
#include<cstdio>
using namespace std; int n;
long long ans;
int phi[]; int main()
{
scanf("%d",&n);
phi[]=;
for(int i=;i<=n;++i)
{
if(!phi[i])
for(int j=i;j<=n;j+=i)
{
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-); //等同于phi[j]=phi[j]*(i-1)/i
//即为 phi[j]=j*(1-1/k1)(1-1/k2)....
}
}
for(int i=;i<n;++i)
ans+=phi[i];
printf("%lld",ans*+);
}

【数论·欧拉函数】SDOI2008仪仗队的更多相关文章

  1. 欧拉函数 || [SDOI2008]仪仗队 || BZOJ 2190 || Luogu P2158

    题面:P2158 [SDOI2008]仪仗队 题解: 显然除了(1,1),(0,1),(1,0)三个点外,对于其他点(x,y)只要满足gcd(x,y)==1就可以被看到 然后这些点是关于y=x对称的, ...

  2. 数论-欧拉函数-LightOJ - 1370

    我是知道φ(n)=n-1,n为质数  的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...

  3. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  4. 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数

    [bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...

  5. 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法

    http://www.lydsy.com/JudgeOnline/problem.php?id=2190   裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...

  6. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  7. Codeforces_776E: The Holmes Children (数论 欧拉函数)

    题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...

  8. Codeforces 776E: The Holmes Children (数论 欧拉函数)

    题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...

  9. 数论 - 欧拉函数模板题 --- poj 2407 : Relatives

    Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11372   Accepted: 5544 Descri ...

随机推荐

  1. 为了提高性能,怎样动态载入JS文件

    超级表格是一款多人协作的在线表格.程序相当复杂,用到十几个JS文件. 可是有些文件是在打开某些类型的表格时才须要载入. 比如,仅仅有当打开甘特图表格时,才须要载入gantetu.js文件. 那么问题来 ...

  2. thinkphp5URL和路由

    前面的话 本文将详细介绍thinkphp5URL和路由 URL访问 ThinkPHP采用单一入口模式访问应用,对应用的所有请求都定向到应用的入口文件,系统会从URL参数中解析当前请求的模块.控制器和操 ...

  3. 传统controller与controllerAs

    传统controller与controllerAs(前面为传统,后面为controllerAs,分割线分隔): 路由模块: .state('home.packing', { url: '/packin ...

  4. Eclipse 插件安装、升级和卸载的方法

    Eclipse 的插件可以装在内部,也可以装在外部,装在内部的方法很简单:把插件的features和plugins目录copy到eclipse的安装目录即可. eclipse和其插件升级比较频繁,用过 ...

  5. .NET+Ajax+ashx 实现Echarts图表动态交互

    前言: 使用Echarts展示图表效果,在这里只做了四种案例:折线.柱状.圆形.雷达.当初是一位朋友用到Echarts展示数据,他没有太多时间弄,所以我就帮他搞出来,当初刚接触的时候也是一头雾水,不知 ...

  6. 《HelloGitHub》第 21 期

    公告 元旦快乐! <HelloGitHub>第 21 期 兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的开源项目. 这是一个面向编 ...

  7. 【JS】第一个js示例

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  8. iOS: FFmpeg编译和使用 学习

    ffmpeg是一个多平台多媒体处理工具,处理视频和音频的功能非常强大.目前在网上搜到的iOS上使用FFMPEG的资料都比较陈旧,而FFMPEG更新迭代比较快: 且网上的讲解不够详细,对于初次接触FFM ...

  9. Equilibrium point

    Given an array A your task is to tell at which position the equilibrium first occurs in the array. E ...

  10. Volatile的作用

    众所周知,volatile关键字可以让线程的修改立刻通知其他的线程,从而达到数据一致的作用.那么它具体涉及到哪些内容呢? 关于缓存 计算机最大的存储空间就是磁盘(硬盘),但是访问的速度也是最慢的,价格 ...