题目描述

如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。

输入输出格式

输入格式:

第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。

接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。

接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。

输出格式:

输出包含M行,每行包含一个正整数,依次为每一个询问的结果。

输入输出样例

输入样例#1: 复制

5 5 4
3 1
2 4
5 1
1 4
2 4
3 2
3 5
1 2
4 5
输出样例#1: 复制

4
4
1
4
4

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=10,M<=10

对于70%的数据:N<=10000,M<=10000

对于100%的数据:N<=500000,M<=500000

样例说明:

该树结构如下:

第一次询问:2、4的最近公共祖先,故为4。

第二次询问:3、2的最近公共祖先,故为4。

第三次询问:3、5的最近公共祖先,故为1。

第四次询问:1、2的最近公共祖先,故为4。

第五次询问:4、5的最近公共祖先,故为4。故输出依次为4、4、1、4、4。

题解

RMQ求LCA的板子。。。

代码

//by 减维
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std; struct edge{
int to,ne;
}e[]; int n,m,s,num,ecnt,head[],dep[],fr[];
int f[][]; void add(int x,int y)
{
e[++ecnt].to=y;
e[ecnt].ne=head[x];
head[x]=ecnt;
} void dfs(int x,int fa)
{
dep[x]=dep[fa]+;
f[++num][]=x;
if(!fr[x])fr[x]=num;
for(int i=head[x];i;i=e[i].ne)
{
int dd=e[i].to;
if(dd==fa)continue;
dfs(dd,x);
f[++num][]=x;
if(!fr[x])fr[x]=num;
}
} void RMQ()
{
for(int j=;(<<j)<=num;++j)
for(int i=;i+(<<j)-<=num;++i)
if(dep[f[i][j-]]<dep[f[i+(<<(j-))][j-]])f[i][j]=f[i][j-];
else f[i][j]=f[i+(<<(j-))][j-];
} int lca(int x,int y)
{
int len=(int)log2(double(y-x+));
return dep[f[x][len]]<dep[f[y-(<<len)+][len]]?f[x][len]:f[y-(<<len)+][len];
} int main()
{
scanf("%d%d%d",&n,&m,&s);
for(int x,y,i=;i<n;++i)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(s,s);
RMQ();
for(int x,y,i=;i<=m;++i)
{
scanf("%d%d",&x,&y);
if(fr[x]>fr[y])swap(x,y);
printf("%d\n",lca(fr[x],fr[y]));
}
}

【RMQ】洛谷P3379 RMQ求LCA的更多相关文章

  1. 【倍增】洛谷P3379 倍增求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  2. 【Tarjan】洛谷P3379 Tarjan求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  3. 【树链剖分】洛谷P3379 树链剖分求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  4. 倍增求LCA学习笔记(洛谷 P3379 【模板】最近公共祖先(LCA))

    倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\ ...

  5. 洛谷 P3379 【模板】最近公共祖先(LCA)

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  6. 洛谷P3379 【模板】最近公共祖先(LCA)(树链剖分)

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  7. 洛谷P2680 运输计划 [LCA,树上差分,二分答案]

    题目传送门 运输计划 Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n?1 条双向航道,每条航道建立在两个星球之间, 这 n?1 条航道连通了 L 国的所 ...

  8. 【洛谷 P4211】[LNOI2014]LCA(树链剖分,差分)

    题目链接 看到题目肯定首先想到要求LCA(其实是我菜),可乍一看,n与q的规模为5W, 求LCA的复杂度为\(O(logN)\),那么总时间复杂度为\(O(nq\ log\ n)\). 怎么搞呢? 会 ...

  9. 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)

    题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...

随机推荐

  1. Clang-Format: Visual Studio Style

    PointerAlignment: Left UseTab: Never IndentWidth: 4 BreakBeforeBraces: Allman AllowShortIfStatements ...

  2. 十一、Spring Boot 集成Shiro和CAS

    1.Shiro 是什么?怎么用? 2.Cas 是什么?怎么用? 3.最好有spring基础 首先看一下下面这张图: 第一个流程是单纯使用Shiro的流程. 第二个流程是单纯使用Cas的流程. 第三个图 ...

  3. Centos7.4下用Docker-Compose部署WordPress

    前言 最近在学习Docker相关知识,通过阅读第一本Docker书后,正想着手实战用一下这个技术,但又不太敢直接在项目环境下动手.考虑足足三秒钟之后决定买个阿里云ECS搭建一个属于自己的基于Docke ...

  4. Github-karpathy/char-rnn代码详解

    Github-karpathy/char-rnn代码详解 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2016-1-10 ...

  5. python字典的操作

    思维导图如下 1.字典的增加 dic1={'name':'wujie','age':18,'gender':'男'} dic1['profession']='python全栈' dic1.setdef ...

  6. Swagger文档添加file上传参数写法

    想在swagger ui的yaml文档里面写一个文件上传的接口,找了半天不知道怎么写,终于搜到了,如下: /tools/upload: post: tags: - "tool" s ...

  7. ES6原生Promise的所有方法介绍(附一道应用场景题目)

    JS的ES6已经出来很久了,作为前端工程师如果对此还不熟悉有点说不过去.不过如果要问,Promise原生的api一共有哪几个?好像真的可以难倒一票人,包括我自己也忽略了其中一个不常用的API Prom ...

  8. 利用MJModel解决关键字

    #import "CJAddressModel.h" @implementation CJAddressModel +(NSDictionary *)mj_replacedKeyF ...

  9. 【CSS3】字体font

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  10. iOS 正则表达式使用(转)

    1/ 教程一:认识正则表达式 .http://deerchao.net/tutorials/regex/regex.htm#mission 表7.尚未详细讨论的语法 代码/语法 说明 \a 报警字符( ...